Skip to main content


Oxide Molecular Beam Epitaxy System

Oxide molecular-beam epitaxy system (OMBE, M600, DCA Instruments Oy, Finland) is a fabrication system for synthesizing ultraclean oxides thin-film materials with atomic-scale precision, in ultra-high vacuum (UHV) condition. The cassette load lock chamber allows for quick loading of the substrate into the system, before transferring into the growth chamber. The UHV chamber is equipped with 9 pumped effusion cells, which allows 9 types of high purity metallic sources to work together. The quality of the growth is monitored by a real-time reflection high energy electron diffraction system (RHEED) and a quartz crystal microbalance (QCM, SQM-160, INFICON, Switzerland) is applied to measure the absolute deposition rates. Electro-pneumatic linear shutters provide an accurate control of the layer-by-layer deposition process with the small fraction precision of an atomic monolayer. The modular design of the OMBE system allows for fast easy reload and metal source replacement, which provides greater flexibility when depositing high-quality complex oxides and their heterostructures at the atomic layer level, including high temperature superconductors.


For more information, please contact us at mmfutures@unsw.edu.au


Laser Molecular Beam Epitaxy System


For more information, please contact us at mmfutures@unsw.edu.au


Molecular-Beam Epitaxy & Scanning Probe Microscopy System

MBE – SPM system is a fully equipped UHV (10-11 mbar) system that allows local surface structure analysis with atomic resolution and single crystal thin-film fabrication. It is capable of surface analysis under cryogenic and high temperature conditions.


For more information, please contact us at mmfutures@unsw.edu.au


Radio Frequency (RF) Magnetron Sputtering Systems

Auto load lock co-sputter system

• Two Chambers: loading, co sputter transfer

• Substrate: 2''-6'' wafer or others

• Sputter Cathode: 4*2'' sputter cathodes

• Substrate heater: 300 to max 950°C

• Automatic Transfer

For more information, please contact us at mmfutures@unsw.edu.au


Thin Film Printer

TFC 02 Thin Film Coater is an ultra-precise laboratory instrument that combines a slot die coater, gravure and doctor blade. It is servo-motor-driven, which ensures a high level of precision and reproducibility of the test parameters and granting users with precise control over the thickness and structure of the patterns to the nanometre range. Ultra-precise granite and vacuum table is also installed for easy scalability during production processes.


For more information, please contact us at mmfutures@unsw.edu.au


Inkjet Printer - DMP-2850 Dimatix Materials Printer

The DMP-2850 Dimatix Materials Printer allows the deposition of fluidic materials on an 8x11 inch or A4 substrate, utilizing a disposable piezo inkjet cartridge. This printer can create and define patterns over an area of about 200 x 300 mm and handle substrates up to 25 mm thick with an adjustable Z height. The temperature of the vacuum platen, which secures the substrate in place, can be adjusted up to 60°C. The DMP-2850 offers a variety of patterns using a pattern editor program. Additionally, a waveform editor and a drop-watch camera system allowsmanipulation of the electronic pulses to the piezo jetting device for optimization of the drop characteristics as it is ejected from the nozzle. This system enables easy printing of structures and samples for process verification and prototype creation.


For more information, please contact us at mmfutures@unsw.edu.au