ORCID as entered in ROS

Select Publications
2023, Helium as a signature of the double detonation in Type Ia supernovae, , http://dx.doi.org/10.48550/arxiv.2307.08660
,2023, No plateau observed in late-time near-infrared observations of the underluminous Type Ia supernova 2021qvv, , http://dx.doi.org/10.48550/arxiv.2306.12858
,2023, AREPO White Dwarf merger simulations resulting in edge-lit detonation and run-away hypervelocity companion, , http://dx.doi.org/10.48550/arxiv.2305.05192
,2023, Rapid Expansion of the Young Type Ia Supernova Remnant 0519-69.0: More Evidence for a Circumstellar Shell, , http://dx.doi.org/10.48550/arxiv.2303.03456
,2022, A Spectral Classification System for Hydrogen-deficient Carbon Stars, , http://dx.doi.org/10.1093/mnras/stad324
,2022, An X-ray Proper Motion Study of the LMC SNR 0509-67.5, , http://dx.doi.org/10.3847/1538-3881/ac9792
,2022, Evidence for a Dense, Inhomogeneous Circumstellar Medium in the Type Ia SNR 0519-69.0, , http://dx.doi.org/10.3847/1538-4357/ac81ca
,2022, Observational constraints on the origin of the elements. V. Non-LTE abundance ratios of [Ni/Fe] in Galactic stars and enrichment by sub-Chandrasekhar mass SNe, , http://dx.doi.org/10.1051/0004-6361/202244286
,2022, The Late-Time Light Curves of Type Ia Supernovae: Confronting Models with Observations, , http://dx.doi.org/10.48550/arxiv.2206.02812
,2022, Modelling the ionisation state of Type Ia supernovae in the nebular-phase, , http://dx.doi.org/10.1093/mnras/stac902
,2022, On the fate of the secondary white dwarf in double-degenerate double-detonation Type Ia supernovae, , http://dx.doi.org/10.1093/mnras/stac3107
,2022, Locating the CSM Emission within the Type Ia Supernova Remnant N103B, , http://dx.doi.org/10.3847/1538-4357/ac4913
,2021, The dawn of a new era for dustless HdC stars with GAIA eDR3, , http://dx.doi.org/10.1051/0004-6361/202142916
,2021, Type Ia Supernova Models: Asymmetric Remnants and Supernova Remnant G1.9+0.3, , http://dx.doi.org/10.3847/1538-4357/ac300f
,2021, Forbidden Line Emission from Type Ia Supernova Remnants Containing Balmer-Dominated Shells, , http://dx.doi.org/10.3847/1538-4357/ac2c04
,2021, SN 2018bsz: significant dust formation in a nearby superluminous supernova, , http://dx.doi.org/10.21203/rs.3.rs-872252/v1
,2021, First extragalactic measurement of the turbulence driving parameter: ALMA observations of the star-forming region N159E in the Large Magellanic Cloud, , http://dx.doi.org/10.48550/arxiv.2109.03983
,2021, Searching for Surviving Companion in the Young SMC Supernova Remnant 1E 0102.2-7219, , http://dx.doi.org/10.48550/arxiv.2104.04835
,2021, Prospects of direct detection of $^{48}$V gamma-rays from thermonuclear supernovae, , http://dx.doi.org/10.48550/arxiv.2103.16840
,2021, Metallicity-dependent nucleosynthetic yields of Type Ia supernovae originating from double detonations of sub-M$_{\text{Ch}}$ white dwarfs, , http://dx.doi.org/10.48550/arxiv.2103.14050
,2020, From supernova to supernova remnant: comparison of thermonuclear explosion models, , http://dx.doi.org/10.48550/arxiv.2011.04769
,2020, LIN 358: A symbiotic binary accreting above the steady hydrogen fusion limit, , http://dx.doi.org/10.48550/arxiv.2011.02864
,2020, A supernova remnant associated with a nascent black hole low-mass X-ray binary, , http://dx.doi.org/10.48550/arxiv.2010.15341
,2020, New Optically Identified Supernova Remnants in the Large Magellanic Cloud, , http://dx.doi.org/10.48550/arxiv.2010.14698
,2020, Nucleosynthesis imprints from different Type Ia Supernova explosion scenarios and implications for galactic chemical evolution, , http://dx.doi.org/10.48550/arxiv.2010.14084
,2020, Imagery and UV Spectroscopy of the LMC Supernova Remnant N103B Using HST, , http://dx.doi.org/10.48550/arxiv.2008.12273
,2020, Observational constraints on the origin of the elements. III. Evidence for the dominant role of sub-Chandrasekhar SN Ia in the chemical evolution of Mn and Fe in the Galaxy, , http://dx.doi.org/10.48550/arxiv.2003.01721
,2020, White dwarf deflagrations for Type Iax supernovae: Polarisation signatures from the explosion and companion interaction, , http://dx.doi.org/10.48550/arxiv.2002.11134
,2020, SNe Ia from double detonations: Impact of core-shell mixing on the carbon ignition mechanism, , http://dx.doi.org/10.48550/arxiv.2002.00981
,2020, Manganese Indicates a Transition from Sub- to Near-Chandrasekhar Type Ia Supernovae in Dwarf Galaxies, , http://dx.doi.org/10.48550/arxiv.2001.01716
,2019, Monte Carlo radiative transfer for the nebular phase of Type Ia supernovae, , http://dx.doi.org/10.48550/arxiv.1912.02214
,2019, A year-long plateau in the late-time near-infrared light curves of Type Ia supernovae, , http://dx.doi.org/10.48550/arxiv.1910.03614
,2019, A Supernova Remnant Counterpart for HESS J1832-085, , http://dx.doi.org/10.48550/arxiv.1908.09269
,2019, Optical tomography of chemical elements synthesized in Type Ia supernovae, , http://dx.doi.org/10.48550/arxiv.1906.05972
,2019, SN1991bg-like supernovae are associated with old stellar populations, , http://dx.doi.org/10.48550/arxiv.1904.10139
,2019, From the supernova to the supernova remnant: the three-dimensional imprint of a thermonuclear explosion, , http://dx.doi.org/10.48550/arxiv.1904.08062
,2018, Excluding super-soft X-ray sources as progenitors for four Type Ia supernovae in the Large Magellanic Cloud, , http://dx.doi.org/10.48550/arxiv.1812.08799
,2018, Remnants and ejecta of thermonuclear electron-capture supernovae: Constraining oxygen-neon deflagrations in high-density white dwarfs, , http://dx.doi.org/10.48550/arxiv.1812.08230
,2018, Calibrating Interstellar Abundances using SNR Radiative Shocks, , http://dx.doi.org/10.48550/arxiv.1811.06659
,2018, The Expansion of the Young Supernova Remnant 0509-68.7 (N103B), , http://dx.doi.org/10.48550/arxiv.1809.06391
,2018, Late-Time Observations of ASASSN-14lp Strengthen the Case for a Correlation between the Peak Luminosity of Type Ia Supernovae and the Shape of their Late-Time Light Curves, , http://dx.doi.org/10.48550/arxiv.1808.00972
,2018, Thermonuclear explosions of rapidly differentially rotating white dwarfs: Candidates for superluminous Type Ia supernovae?, , http://dx.doi.org/10.48550/arxiv.1807.10199
,2018, The effect of positron-alkali metal atom interactions in the diffuse ISM, , http://dx.doi.org/10.48550/arxiv.1807.01880
,2018, Identification of the Central Compact Object in the young supernova remnant 1E0102.2-7219, , http://dx.doi.org/10.48550/arxiv.1803.01006
,2018, On the formation of neutron stars via accretion-induced collapse in binaries, , http://dx.doi.org/10.48550/arxiv.1802.02437
,2018, Integral Field Spectroscopy of Supernova Remnant 1E0102-7219 Reveals Fast-moving Hydrogen and Sulfur-rich Ejecta, , http://dx.doi.org/10.48550/arxiv.1801.06289
,2017, Observations of SN 2015F suggest a correlation between the intrinsic luminosity of Type Ia supernovae and the shape of their light curves >900 days after explosion, , http://dx.doi.org/10.48550/arxiv.1711.01275
,2017, Positron Annihilation in the Nuclear Outflows of the Milky Way, , http://dx.doi.org/10.48550/arxiv.1710.02613
,2017, Connecting the progenitors, pre-explosion variability, and giant outbursts of luminous blue variables with Gaia16cfr, , http://dx.doi.org/10.48550/arxiv.1706.09962
,2017, Extremely late photometry of SN~2011fe, , http://dx.doi.org/10.48550/arxiv.1706.01460
,