Select Publications
Journal articles
2024, 'Effect of Heating and Massaging of Meibomian Glands on Their Imaging', Medicina (Lithuania), 60, http://dx.doi.org/10.3390/medicina60101603
,2024, 'BCLA CLEAR Presbyopia: Management with contact lenses and spectacles', Contact Lens and Anterior Eye, 47, http://dx.doi.org/10.1016/j.clae.2024.102158
,2024, 'Tomorrow brought into focus', Optician, 269, pp. 16 - 18, http://dx.doi.org/10.12968/opti.2024.269.6956.16
,2024, 'Dry eye clinical practice patterns of UK optometrists', Optician, 269, pp. 31 - 35, http://dx.doi.org/10.12968/opti.2024.269.6946.29
,2024, 'Investigation of the optimal method and viewing time for assessing conjunctival Lissamine Green staining', Contact Lens and Anterior Eye, 47, pp. 102241 - 102241, http://dx.doi.org/10.1016/j.clae.2024.102241
,2023, 'Current approaches to soft contact lens handling training – Global perspectives', Contact Lens and Anterior Eye, 46, http://dx.doi.org/10.1016/j.clae.2023.102068
,2023, 'Human Tear Protein Analysis Using a Quantitative Microfluidic System: A Pilot Study', Eye and Contact Lens, 49, pp. 498 - 504, http://dx.doi.org/10.1097/ICL.0000000000001036
,2023, 'Dry eye clinical practice patterns of UK optometrists', Contact Lens and Anterior Eye, 46, http://dx.doi.org/10.1016/j.clae.2023.101889
,2023, 'BCLA back in person at last', Optician, 268, pp. 13 - 15, http://dx.doi.org/10.12968/opti.2023.268.6910.13
,2023, 'Novel Peptides with Dual Properties for Treating Pseudomonas aeruginosa Keratitis: Antibacterial and Corneal Wound Healing', Biomolecules, 13, pp. 1028, http://dx.doi.org/10.3390/biom13071028
,2023, 'The effect of non-ablative thermomechanical skin treatment (Tixel®) on dry eye disease: A prospective two centre open-label trial', Contact Lens and Anterior Eye, 46, http://dx.doi.org/10.1016/j.clae.2022.101811
,2023, 'Artificial Tears: A Systematic Review', Clinical Optometry, 15, pp. 9 - 27, http://dx.doi.org/10.2147/OPTO.S350185
,2023, 'Effect of Deposition and Protease Digestion on the Ex Vivo Activity of Antimicrobial Peptide-Coated Contact Lenses', Nanomaterials, 13, pp. 349, http://dx.doi.org/10.3390/nano13020349
,2022, 'Ocular Surface Infection and Antimicrobials', Antibiotics, 11, pp. 1496, http://dx.doi.org/10.3390/antibiotics11111496
,2022, 'Fast versus gradual adaptation of soft monthly contact lenses in neophyte wearers', Contact Lens and Anterior Eye, 45, http://dx.doi.org/10.1016/j.clae.2021.101469
,2022, 'A rationally designed synthetic antimicrobial peptide against Pseudomonas-associated corneal keratitis: Structure-function correlation', Biophysical Chemistry, 286, http://dx.doi.org/10.1016/j.bpc.2022.106802
,2022, 'Antimicrobial Efficacy of an Ultraviolet-C Device against Microorganisms Related to Contact Lens Adverse Events', Antibiotics, 11, http://dx.doi.org/10.3390/antibiotics11050699
,2022, 'Ocular microbiota and lens contamination following Mel4 peptide-coated antimicrobial contact lens (MACL) extended wear', Contact Lens and Anterior Eye, 45, http://dx.doi.org/10.1016/j.clae.2021.02.017
,2022, 'Biocompatibility and Comfort during Extended Wear of Mel4 Peptide-Coated Antimicrobial Contact Lenses', Antibiotics, 11, pp. 58, http://dx.doi.org/10.3390/antibiotics11010058
,2022, 'A CLEAR spotlight', Optician, 2022, pp. 244251 - 1, http://dx.doi.org/10.12968/opti.2022.2.244251
,2022, 'Antimicrobial efficacy of novel ultraviolet-C device in reducing contamination of contact lenses', Contact Lens and Anterior Eye, 45, pp. 101610 - 101610, http://dx.doi.org/10.1016/j.clae.2022.101610
,2022, 'Lens wear adaptation in neophytes wearing monthly replacement soft lenses', Contact Lens and Anterior Eye, 45, pp. 101657 - 101657, http://dx.doi.org/10.1016/j.clae.2022.101657
,2021, 'Enhancement of antibiofilm activity of ciprofloxacin against staphylococcus aureus by administration of antimicrobial peptides', Antibiotics, 10, pp. 1159, http://dx.doi.org/10.3390/antibiotics10101159
,2021, 'Enhancement of Antibiofilm Activity of Ciprofloxacin against Staphylococcus aureus by Administration of Antimicrobial Peptides', Antibiotics, 10, pp. 1 - 17, http://dx.doi.org/10.20944/preprints202108.0451.v1
,2021, 'CLEAR - Anatomy and physiology of the anterior eye', Contact Lens and Anterior Eye, 44, pp. 132 - 156, http://dx.doi.org/10.1016/j.clae.2021.02.009
,2021, 'Adaptation and adverse responses to contact lens wear', Contact Lens and Anterior Eye, 44, pp. 1 - 2, http://dx.doi.org/10.1016/j.clae.2020.12.002
,2021, 'Effect of large diameter and plasma coating on the initial adaptation of gas permeable contact lens fitting for neophytes', Contact Lens and Anterior Eye, 44, pp. 76 - 80, http://dx.doi.org/10.1016/j.clae.2020.08.009
,2021, 'Effect of antimicrobial contact lenses on corneal infiltrative events: A randomized clinical trial', Translational Vision Science and Technology, 10, pp. 32 - 32, http://dx.doi.org/10.1167/tvst.10.7.32
,2020, 'Poly-ε-Lysine or Mel4 Antimicrobial Surface Modification on a Novel Peptide Hydrogel Bandage Contact Lens', Advanced Materials Interfaces, 7, http://dx.doi.org/10.1002/admi.202001232
,2020, 'Prevalence and seasonal variation of Acanthamoeba in domestic tap water in greater Sydney, Australia', Clinical and Experimental Optometry, 103, pp. 782 - 786, http://dx.doi.org/10.1111/cxo.13065
,2020, 'Activity of Antimicrobial Peptides and Ciprofloxacin against Pseudomonas aeruginosa Biofilms', Molecules, 25, pp. 3843, http://dx.doi.org/10.3390/molecules25173843
,2020, 'Active loading graphite/hydroxyapatite into the stable hydroxyethyl cellulose scaffold nanofibers for artificial cornea application', Cellulose, 27, pp. 3319 - 3334, http://dx.doi.org/10.1007/s10570-020-02999-w
,2020, 'Mechanism of Action of Surface Immobilized Antimicrobial Peptides Against Pseudomonas aeruginosa', Frontiers in Microbiology, 10, pp. 3053, http://dx.doi.org/10.3389/fmicb.2019.03053
,2020, 'Interaction of the surface bound antimicrobial peptides melimine and Mel4 with Staphylococcus aureus', Biofouling, 36, pp. 1019 - 1030, http://dx.doi.org/10.1080/08927014.2020.1843638
,2020, 'The development of an antimicrobial contact lens – from the laboratory to the clinic', Current Protein and Peptide Science, 21, pp. 357 - 368, http://dx.doi.org/10.2174/1389203721666191231110453
,2020, 'Inhalation Delivery of Host Defense Peptides (HDP) using Nano- Formulation Strategies: A Pragmatic Approach for Therapy of Pulmonary Ailments.', Curr Protein Pept Sci, 21, pp. 369 - 378, http://dx.doi.org/10.2174/1389203721666191231110453
,2019, 'Single Step Plasma Process for Covalent Binding of Antimicrobial Peptides on Catheters to Suppress Bacterial Adhesion', ACS Applied Bio Materials, 2, pp. 5739 - 5748, http://dx.doi.org/10.1021/acsabm.9b00776
,2019, 'Author Correction: Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa (Scientific Reports, (2019), 9, 1, (7063), 10.1038/s41598-019-42440-2)', Scientific Reports, 9, pp. 13267, http://dx.doi.org/10.1038/s41598-019-49307-6
,2019, 'Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa', Scientific Reports, 9, pp. 7063, http://dx.doi.org/10.1038/s41598-019-42440-2
,2019, 'Reflection of contact lens practice', Contact Lens and Anterior Eye, 42, pp. 587 - 589, http://dx.doi.org/10.1016/j.clae.2019.10.003
,2019, 'Development of antibacterial contact lenses containing metallic nanoparticles', Polymer Testing, 79, pp. 106034, http://dx.doi.org/10.1016/j.polymertesting.2019.106034
,2019, 'Synergy between Synthetic Antimicrobial Polymer and Antibiotics: A Promising Platform to Combat Multidrug-Resistant Bacteria', ACS Infectious Diseases, 5, pp. 1357 - 1365, http://dx.doi.org/10.1021/acsinfecdis.9b00049
,2019, 'The repeatability of subjective and objective tear ferning assessment and its association with lipid layer thickness, non-invasive tear break-up time and comfort', Contact Lens and Anterior Eye, 42, pp. 420 - 427, http://dx.doi.org/10.1016/j.clae.2019.04.003
,2019, 'Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability', PLoS ONE, 14, pp. e0215703, http://dx.doi.org/10.1371/journal.pone.0215703
,2019, 'A pilot study of the synergy between two antimicrobial peptides and two common antibiotics', Antibiotics, 8, pp. 60, http://dx.doi.org/10.3390/antibiotics8020060
,2019, 'Copper and Silver nanoparticle loaded antimicrobial contact lenses', Contact Lens and Anterior Eye, 42, pp. e11 - e12, http://dx.doi.org/10.1016/j.clae.2019.10.039
,2019, 'The prevalence and seasonal variation of Acanthamoeba in domestic tap-water in greater Sydney region, Australia', Contact Lens and Anterior Eye, 42, pp. e37 - e37, http://dx.doi.org/10.1016/j.clae.2019.10.124
,2019, 'The susceptibility of bacterial isolate from corneal infiltrative events of Melimine Antimicrobial Contact Lens (MACL) wear clinical trial', Contact Lens and Anterior Eye, 42, pp. e38 - e38, http://dx.doi.org/10.1016/j.clae.2019.10.126
,2018, 'Action of antimicrobial peptides against bacterial biofilms', Materials, 11, pp. 2468, http://dx.doi.org/10.3390/ma11122468
,2018, 'Esculentin-1a derived peptides kill Pseudomonas aeruginosa biofilm on soft contact lenses and retain antibacterial activity upon immobilization to the lens surface', Peptide Science, 110, http://dx.doi.org/10.1002/bip.23074
,