Researcher

Keywords

Fields of Research (FoR)

Chemical Engineering, Water Treatment Processes, Synthesis of Materials, Synthesis of Materials, Composite Materials, Composite and Hybrid Materials, Functional Materials, Nanomaterials, Nanotechnology, Nanotechnology, Chemical Characterisation of Materials

Biography

I am a Chemical Engineer who specialises in the design of advanced materials that exhibited useful properties at the nano-length scale. My research focuses on the fabrication of magnetic, electromagnetic and photo responsive nanomaterials that are driven by function. My goal is to bridge the gaps between fundamental research and applications of these advanced nanomaterials in areas of technological and broad societal interest. I was awarded a...view more

I am a Chemical Engineer who specialises in the design of advanced materials that exhibited useful properties at the nano-length scale. My research focuses on the fabrication of magnetic, electromagnetic and photo responsive nanomaterials that are driven by function. My goal is to bridge the gaps between fundamental research and applications of these advanced nanomaterials in areas of technological and broad societal interest. I was awarded a total of $3.99 millions in competitive research funding from the Australian Research Council to undertake research in novel material design and fabrication, and understanding of how these materials can be incorporated into new devices or engineering processes. To date, the materials my team designed have been used for cancer drug delivery, water treatment, and high performance electrochemical sensing.

I also teach in the Chemical Engineering Program at UNSW's School of Chemical Engineering. As a Fellow of the UNSW Scientia Education Academy, a Senior Fellow of the Higher Education Academy and the 2020 recipient of the Faculty of Engineering Education Innovation Fellow, I innovate and contribute to the design of engineering science, design and laboratory courses. My teaching philosophy aligns with a quote from Jacques-Yves Cousteau who said, “People protect what they love, they love what they understand, and they understand what they are taught” -- I see education as an act that transforms our beliefs, values and mindsets, with the potential to emancipate and empower its participants.


My Grants

Research Grants

  1. 2016 UNSW Goldstar-ARC • Separation-Extraction-Reaction Filtration (SERF) Unit to Step Up the Harvesting and Processing of Micoalgae - $40,000
  2. 2015 UNSW MREII • Nanosight Particle Analyser for Flow Cytometry - $104,370 2014 UNSW Goldstar-ARC Designing a Magnetic Bacteria Extraction System for Use in Complex Sample Matrices - $40,000
  3. 2014 UNSW MREII • Laser Diffraction Instrument (Malvern Mastersizer 3000) to Enable the Analysis of the Physical Properties of Particulate Matter in Solution - $73,080
  4. 2013 ARC IC130100021 • ARC Training Centre For Advanced Technologies In Food Manufacture - $2,100,000
  5. 2013 UNSW FRGP • Acicular Composite Nanoparticles as Universal Contrast Agent for Multi-Modal Medical Imaging and Stimulus-Responsive Controlled Drug Released - $20,000
  6. 2011 ARC LP110100459 • Multi-scale Strategy to Manage Chloramine Decay and Nitrification in Water Distribution Systems - $660,000
  7. 2011 UNSW MREII • Equipment for Real-Time Monitoring of Nanoparticle Properties and Interactions - $182,950
  8. 2011 UNSW MREII • Large-Sample-Platform Atomic Force Microscope System for Surface NanoCharacterisation - $57,000
  9. 2010 ARC LP100100481 • Development and Modelling of Advanced Coagulation and Oxidation Processes - $557,000
  10. 2010 ARC LE100100128 • High Performance Analytical Tools to Strengthen Clean Energy Research - $300,000
  11. 2010 UNSW FRGP • One step separation and detection method for CryptosporidiumParvum oocyst - $25,000
  12. 2008 ARC LP0882720 • Numerical Modelling and Experimental Studies to Design and Engineer Nanoparticulate Systems for Bioapplications - $371,000

Education Grants

  1. Digital Uplift • Lim, M., Hannon, M. (2019). $30,000 for the Digital Uplift of ENGG4999,
  2. Scientia Education Investment Fund • Kellermann et al. (2019). $93,400 for an Analytics-Driven Tailored Learning Platform for STEM Modules
  3. Scientia Education Investment Fund • Polly, P. et al. (2018). $200K for a UNSW Micro-Credentialing Ecosystem for Recognising Learning and Skills Attainment in Capstone Courses and Internships
  4. Chemical Engineering Teaching Microgrant • Lim, M. (2018). $10,000 for Development of Adaptive Tutorial for CEIC2001 Fluid and Particle Mechanics in Preparation for UNSW3+,
  5. Digital Uplift • Henderson, R., Lim, M. and Lucien, F. (2017). $30,000 for the Digital Uplift of CEIC3004
  6. Digital Uplift • Lim, M., Vulic, J., Felder, S. and Chan, S. (2016). $30,000 for Digital Uplift of CEIC2001, CVEN2501 and MMAN2600
  7. Chemical Engineering Teaching Microgrant • Lim, M. (2016). $8000 for Development of Moodle Question Bank for CEIC2001 Fluid and Particle Mechanics Online Quiz

My Research Activities

My research has focused on the development of nanomaterials with tailored magnetic, photocatalytic, morphological and anti-microbial properties for biomedical and environmental applications. Underpinning the development of these advanced nanomaterials are studies on how their functions and performances are influenced by their physical, chemical and biological interactions with the system of interest.

Research Highlights

‘Smart’ nano-scale magnetic nanoparticles for high performance electrochemical sensors. I developed a synthesis method that enabled a complete gold shell to be grown on the surface of highly magnetic nanoparticles (Chemistry of Materials, 21:4, 673-683, 2009). I applied these gold-coated magnetic nanoparticles as ‘dispersible electrodes’ in biosensors that were capable of detecting trace analyte in a large sample matrix with unprecedented sensitivity and response time (Chemical Communications, 46, 8821-8823, 2010; Angwwandte Chemie, 51:26, 6456-6459, 2012; ChemPlusChem 79:10, 1498-1506, 2014). The magnetic gold nanoparticle synthesis method has been adopted by other investigators to prepare magnetic gold nanoparticle for a wide range of applications, including magnetic separation, biomedical imaging, drug delivery and gene technology.

Magnetic and photocatalytic nanomaterial for environmental applications. I applied magnetic titanium dioxide based water treatment technologies to the rapid adsorption and separation of water pollutant for off-site treatment (Langmuir 26:14, 12247-12252, 2010; Chemical Engineering Journal 246, 196–203, 2014; Chemical Engineering Science 104, 46-52, 2014). My approach overcomes two challenges in the use of nanomaterials in drinking water treatment: (1) Slow pollutant degradation rate; (2) high-energy requirement for photocatalyst activation and separation. I also developed a low-temperature method for coating heat-sensitive polymeric membrane with a uniform layer of crystalline titanium dioxide (Journal of Membranes Science 380:1-2, 98-113, 2011). Underpinning this body of research is the use of water characterisation techniques such as High Performance Size Exclusion Chromatography (HPSEC) and Liquid Chromatography-Organic Carbon Detection (LC-OCD) to demonstrate how the chemical composition of water pollutants affects its treatment process (Separation Science and Technology 42:7, 1391-1404, 2007; Environmental Science and Technology 42:16, 6218–6223, 2008; Chemosphere 72:2, 263-271, 2008; Organic Geochemistry 41:2, 124-129, 2010; Water Research 44:8, 2525-2532, 2010; Water Research 46:15, 4614-4620, 2012; Journal of Hazardous Materials 263:2, 718-725, 2013).

Understanding nanomaterials and biological system interactions. I demonstrated how the order in which the three component of a magnetic gene vector (magnetic nanoparticles, DNA and polymer) is assembled affects its efficacy in gene therapy (Langmuir 26:10, 7314-7326, 2010; Biomacromolecules 11:9, 2521-2531, 2010; Journal of Colloid and Interface Science 354:2, 536-45, 2011). This lead to further research on the mechanism behind serum protein induced reduction of nanoparticles size in biological media (Journal of Nanoparticle Research, 13:9 3801-3813, 2011; Langmuir, 27:2, 843-850, 2011), and how this in turn affects the uptake kinetics and biological impact of nanoparticles towards biological cells (ACS Nano, 6:5, 4083-4093, 2012). I also showed that zinc oxide nanoparticles underwent different dissolution and re-precipitation process depending on the type of biological media it was suspended in, thus affecting its toxicity towards biological cells (RSC Advances, 4:9, 4363-4370, 2014), and how polymer coatings can affect serum-nanoparticle interactions (Polymer Chemistry, 3:10, 2743-2751, 2012; Langmuir, 28:9, 4346-4356, 2012Journal of Materials Chemistry B 2:15, 2060 – 2083, 2014).


My Teaching

My approach to learning and teaching is based on the principles of andragogy. When teaching Level 2 engineering science courses (CEIC2001 Fluid and Particle Mechanics, 2009-current), I apply the principle of self-concept by designing a series of adaptive online and face-to-face activities which allow students to be self-directed in their learning. By engaging them in collaborative problem-based learning, my students bring their own experience to the learning process and benefit from the experience of others, and thereby develop their metacognitive and problem-solving skills.

I extend these approaches to my Level 3 laboratory and engineering design (CEIC3003 Chemical Engineering Laboratory, 2012-2017; CEIC3004 Process Equipment Design, 2014-current; DESN2000 Engineering Design and Professional Practice, 2021-current) where students are placed in diverse team tasked with the design of real-world chemical processes. The collaborative project-based approach orients the students towards the development of skill sets that are practical and relevant to the engineering profession, such as information literacy, scientific communication, project management, teamwork and leadership.

As my school’s Industrial Training and Taste of Research Coordinator (2014-2017), I was responsible for coordinating a Work Integrated Learning Program where students first made the transition from being a student to becoming a professional engineer. To support the students, I develop a series of activities which develop their employability skills and professional network. I also secure funds to develop tools which track, evaluate, as well as provide feedback and academic credentials to the students on their readiness to make the transition.

Contributions to Learning and Teaching

School Level Contributions

  • Industrial Training and Taste of Research Coordinator (2015 - 2018)

Faculty Level Contributions

  • Reviewer, Faculty Peer Review Program (2015 - present)
  • Convenor, Workshop on Reflective Practice, Engineering Education Showcase (2018)  
  • Member, Faculty of Engineering Education Innovation Committee (2018 - 2019) 
  • Member, Faculty of Engineering Academic Quality Committee (2018 - 2020)
  • Facilitator, Course Design Institute (2019) 
  • Member, Selection Panel for Education Focussed Positions (2019) 
  • Mentor, UNSW Engineering Enable Mentorship Program (2019 - present) 
  • Facilitator, Faculty Sessional Teaching Staff Training Workshop (2019 - Present) 
  • Education Innovation Fellow (2020)
  • Chair, Faculty of Engineering Academic Quality Committee (2021 - Present)
  • Member, Faculty of Engineering Academic Program Committee (2021 - Present) 

Institution Level Contributions

  • Fellow, Scientia Education Academy (2018-present)
  • Mentor, PVCE Mentoring Program (2019 - present)
  • Reviewer, PVCE Peer Reviewer (2019 - present) 
  • Member, UNSW L&T Forum Planning Committee (2019)
  • Session Chair, UNSW L&T Forum (2019, 2020)

National Contributions

  • Convenor, Workshop on Work Integrated Learning, AAEE (2019)

Publications

  1. Skinner, I., Lim, M., Chen, S., Henderson, R., Vigentini, L. (2020). Exploring Equity, Diversity and Inclusion with Engineering Students. Proceedings of the 2020 Annual Conference of the Australasian Association for Engineering Education (AAEE), 6-9 December 2020, Sydney, Australia.
  2. Lim, M., Hannon, M., Polly, P. (2019). Industrial Training for 4000 Engineering Students: How Hard Can It Be? Proceedings of the 2019 Annual Conference of the Australasian Association for Engineering Education (AAEE), 8-11 December 2019, Brisbane, Australia.
  3. Lim, M., Vulic, J., Felder, S. and Chan, S.  (2017). A Problem Shared is a Problem Halved: Benefits of Collaborative Online Engineering L&T Content Development. Proceedings of the 2017 Annual Conference of the Australasian Association for Engineering Education (AAEE) 2017, Sydney, Australia.

Presentations and Invited Talk

  1. Skinner, I., Lim, M., Chen, S., Henderson, R., Vigentini, L. (2020). Exploring Equity, Diversity and Inclusion with Engineering Students. Annual Conference of the Australasian Association for Engineering Education (AAEE), 6-9 December 2020, Sydney, Australia.
  2. Lim, M. (2020). Dove, Owl, Peacock or Eagle - What do birds have to do with scaffolding students for online teamwork? UNSW Scientia Education Academy Lecture Series, 28 September 2020, Sydney, Australia.
  3. Lim, M., Neal, P. (2020). Remote delivery in response to COVID-19. UNSW Connections Seminar Series, 26 May 2020, Sydney, Australia.
  4. Lim, M., Hannon, M., Polly, P. (2019). Industrial Training for 4000 Engineering Students: How Hard Can It Be? Annual Conference of the Australasian Association for Engineering Education (AAEE), 8-11 December 2019, Brisbane, Australia.
  5. Lim, M., Ranasinghe, B., Hannon, M.  (2019). Industrial Training for 1000 Engineering Students: How hard can it be?, 29 September-2 October 2019, CHEMECA2019, Sydney, Australia.
  6. Bilboa, J., Lim, M. (2019. Questions to Spark Students' Reflection and Improve Their Wellbeing. 2019 Learning and Teaching Forum, The University of New South Wales.
  7. Bilboa, J., Lim, M. (2019). Asking Questions to Spark Students' Reflection and Improve Their Wellbeing. 2019 Engineering Education Showcase, Faculty of Engineering, UNSW, Sydney, Australia.
  8. Ranasinghe, B., Lim, M. (2019). 1000 student internships - how hard can it be?, 2019 National Students as Partners Roundtable, UNSW, Sydney, Australia.
  9. Lim, M., Hannon, M., Alvarez Gaitan, J., Hayes, J., Richardson, A., Polly, P.  (2018). Reflective Practice in Engineering, Engineering Education Showcase 2018, UNSW, Sydney, Australia.
  10. Lim, M., Ranasinghe, B., Hannon, M.  (2018). Industrial Training for 1000 Engineering Students: How hard can it be?, L&T Forum 2018, Partners in Learning – Connecting Communities, UNSW.
  11. Lim, M. and Ranasinghe, B. (2017). Partnerships with Engineering Student Societies to Improve Industrial Training Experience and Career Development. L&T Forum 2017, Educational Excellence: Transforming Futures, UNSW.
  12. Lim, M., Ranasinghe, B. and Daniels, E. (2017). Walk Beside Me and Be My Student Partner. Students as Partners Network Meeting, UNSW.
  13. Lim, M., Vulic, J., Felder, S. and Chan, S. (2017). Three-Engineers Approach to Strategic Content Development for Blended Learning. Engineering Education Showcase 2017, UNSW, Sydney, Australia.
  14. Lim, M., Vulic, J., Felder, S. and Chan, S.  (2017). A Problem Shared is a Problem Halved: Benefits of Collaborative Online Engineering L&T Content Development. Annual Conference of the Australasian Association for Engineering Education (AAEE) 2017, Sydney, Australia.
  15. Lim, M. (2015). Rethinking Chemical Engineering Laboratory. Asia Pacific Confederation of Chemical Engineering Congress (APCChE) 2015, Melbourne, Australia.
  16. Lim, M. (2015). Rethinking Chemical Engineering Laboratory. Learning and Teaching Day 2015, UNSW, Canberra, Australia.
  17. Lim, M. (2015). Rethinking Chemical Engineering Laboratory. Universiti Sains Malaysia, Malaysia.
  18. Lim, M. and Dunn, A. (2014). Chemical Engineering Laboratory Overhaul - What We Learnt About Providing Feedback. Learning and Teaching Forum 2014, UNSW, Sydney, Australia.
View less

Location

Room 520 Hilmer Building
School of Chemical Engineering
The University of New South Wales
Sydney NSW 2052
AUSTRALIA

Contact

+61 2 9385 6587