Select Publications
Journal articles
2024, 'Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-47112-y
,2024, 'Charge Management Enables Efficient Spontaneous Chromatic Adaptation Bipolar Photodetector', Small, 20, http://dx.doi.org/10.1002/smll.202309827
,2024, 'Suppressing Oxidation at Perovskite–NiO
2024, 'Fundamental understanding of stability for halide perovskite photovoltaics: The importance of interfaces', Chem, 10, pp. 35 - 47, http://dx.doi.org/10.1016/j.chempr.2023.09.002
,2023, 'Efficient Solar-Driven Water Splitting Enabled by Perovskite Photovoltaics and a Halogen-Modulated Metal-Organic Framework Electrocatalyst', ACS Nano, 17, pp. 23478 - 23487, http://dx.doi.org/10.1021/acsnano.3c05583
,2023, 'Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells', Science, 382, pp. 284 - 289, http://dx.doi.org/10.1126/SCIENCE.ADE9637
,2023, 'Eco-friendly perovskite solar cells: From materials design to device processing and recycling', EcoMat, 5, http://dx.doi.org/10.1002/eom2.12352
,2023, 'Underlayer engineering of grain strain toward efficient and stable tin perovskite solar cells', Materials Chemistry Frontiers, 7, pp. 3406 - 3413, http://dx.doi.org/10.1039/d3qm00236e
,2023, 'Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells', Nature Energy, 8, pp. 462 - 472, http://dx.doi.org/10.1038/s41560-023-01227-6
,2023, 'Backbone Engineering Enables Highly Efficient Polymer Hole-Transporting Materials for Inverted Perovskite Solar Cells', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202208431
,2023, 'Green-solvent Processable Dopant-free Hole Transporting Materials for Inverted Perovskite Solar Cells', Angewandte Chemie - International Edition, 62, http://dx.doi.org/10.1002/anie.202218752
,2023, 'Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35%', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202206387
,2022, 'Boosting the Fill Factor through Sequential Deposition and Homo Hydrocarbon Solvent toward Efficient and Stable All-Polymer Solar Cells', Advanced Energy Materials, 12, http://dx.doi.org/10.1002/aenm.202202729
,2022, 'Efficient and stable Cs
2022, 'Modulating the deep-level defects and charge extraction for efficient perovskite solar cells with high fill factor over 86%', Energy and Environmental Science, 15, pp. 4813 - 4822, http://dx.doi.org/10.1039/d2ee02543d
,2022, 'Efficient and Stable 3D/2D Perovskite Solar Cells through Vertical Heterostructures with (BA)
2022, 'Efficient and Stable Tin Perovskite Solar Cells by Pyridine-Functionalized Fullerene with Reduced Interfacial Energy Loss', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202205870
,2022, 'Interface functionalization in inverted perovskite solar cells: From material perspective', Nano Research Energy, 1, http://dx.doi.org/10.26599/NRE.2022.9120011
,2022, 'Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells', Science, 376, http://dx.doi.org/10.1126/science.abm8566
,2022, 'An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics', Nano Energy, 93, http://dx.doi.org/10.1016/j.nanoen.2021.106853
,2022, 'Sulfonated Graphene Aerogels Enable Safe-to-Use Flexible Perovskite Solar Modules', Advanced Energy Materials, 12, http://dx.doi.org/10.1002/aenm.202103236
,2022, 'Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202107359
,2021, 'Low-Bandgap Organic Bulk-Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells', Advanced Materials, 33, http://dx.doi.org/10.1002/adma.202105539
,2021, 'Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-020-20791-z
,2021, 'Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells', Nano Energy, 82, http://dx.doi.org/10.1016/j.nanoen.2020.105701
,2021, 'Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor', Angewandte Chemie - International Edition, 60, pp. 7227 - 7233, http://dx.doi.org/10.1002/anie.202016085
,2021, 'Low-Temperature Processed Carbon Electrode-Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability', Energy and Environmental Materials, 4, pp. 95 - 102, http://dx.doi.org/10.1002/eem2.12089
,2020, 'Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics', Nano Energy, 78, http://dx.doi.org/10.1016/j.nanoen.2020.105377
,2020, 'Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency', Journal of the American Chemical Society, 142, pp. 20134 - 20142, http://dx.doi.org/10.1021/jacs.0c09845
,2020, '2D metal–organic framework for stable perovskite solar cells with minimized lead leakage', Nature Nanotechnology, 15, pp. 934 - 940, http://dx.doi.org/10.1038/s41565-020-0765-7
,2020, 'Dopant-Free Crossconjugated Hole-Transporting Polymers for Highly Efficient Perovskite Solar Cells', Advanced Science, 7, http://dx.doi.org/10.1002/advs.201903331
,2020, 'Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells', Joule, 4, pp. 1248 - 1262, http://dx.doi.org/10.1016/j.joule.2020.04.001
,2020, 'Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells', Journal of Materials Chemistry A, 8, pp. 11448 - 11459, http://dx.doi.org/10.1039/d0ta02956d
,2020, 'Hybrid Perovskite-Organic Flexible Tandem Solar Cell Enabling Highly Efficient Electrocatalysis Overall Water Splitting', Advanced Energy Materials, 10, http://dx.doi.org/10.1002/aenm.202000361
,2020, 'Vertical Orientated Dion–Jacobson Quasi-2D Perovskite Film with Improved Photovoltaic Performance and Stability', Small Methods, 4, http://dx.doi.org/10.1002/smtd.201900831
,2020, 'Improving Photovoltaic Performance Using Perovskite/Surface-Modified Graphitic Carbon Nitride Heterojunction', Solar RRL, 4, http://dx.doi.org/10.1002/solr.201900413
,2019, 'Stability of Nonfullerene Organic Solar Cells: from Built-in Potential and Interfacial Passivation Perspectives', Advanced Energy Materials, 9, http://dx.doi.org/10.1002/aenm.201900157
,2019, 'Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses', Chemical Communications, 55, pp. 4315 - 4318, http://dx.doi.org/10.1039/c9cc00016j
,