Select Publications
Books
, 2023, Flow Batteries: From Fundamentals to Applications: Volume 1, 2 and 3, http://dx.doi.org/10.1002/9783527832767
, 2023, Preface
, 2014, Advances in Batteries for Medium and Large-Scale Energy Storage, Menictas C; Skyllas-Kazacos M; Lim TM, (eds.), Woodhead Pub Limited
, 2014, Advances in Batteries for Medium and Large-Scale Energy Storage: Types and Applications, http://dx.doi.org/10.1016/C2013-0-16429-X
, 2014, Proceedings of 11th Australasian Aluminium Smelting Technology Conference,, Welch BJ; Skyllas-Kazacos M, (ed.), University of New South Wales, Sydney, Australia
, 2005, Challenges in Mass Balance Control, TMS, USA
, 2001, Proceedings of 7th Australasian Aluminium Smelting Technology Conference and Workshops, Skyllas-Kazacos M; Welch B, (ed.), Centre for Electrochemical and Minerals Processing, Sydney Australia
Book Chapters
, 2025, 'Batteries – Battery Types – Redox-Flow Batteries | Vanadium Flow Battery Systems', in Encyclopedia of Electrochemical Power Sources, Elsevier, pp. 12 - 23, http://dx.doi.org/10.1016/b978-0-323-96022-9.00010-4
, 2024, 'Batteries – Battery Types – Redox-Flow Batteries', in Encyclopedia of Electrochemical Power Sources Volume 1 7 Second Edition, pp. V5 - 23, http://dx.doi.org/10.1016/B978-0-323-96022-9.00010-4
, 2024, 'Estimation of the Spatial Alumina Concentration of an Aluminium Smelting Cell Using a Huber Function-Based Kalman Filter', in , pp. 464 - 473, http://dx.doi.org/10.1007/978-3-031-50308-5_59
, 2024, 'Predicting Electrolyte and Liquidus Temperatures of Aluminium Smelting Cells for Power Modulation Using Dynamic Model', in , pp. 445 - 452, http://dx.doi.org/10.1007/978-3-031-50308-5_57
, 2023, 'The History of the
, 2023, 'Dynamic Modelling of Vanadium Flow Batteries for System Monitoring and Control', in Roth C; Noack J; Skyllas-Kazacos M (ed.), Flow Batteries, From Fundamentals to Applications, Wiley-VCH, pp. 443 - 462, http://dx.doi.org/10.1002/9783527832767
, 2023, 'A Dynamic Coupled Mass and Thermal Model for the Top Chamber of the Aluminium Smelting Cells', in , pp. 67 - 76, http://dx.doi.org/10.1007/978-3-031-22532-1_9
, 2023, 'A Smart Individual Anode Current Measurement System and Its Applications', in , pp. 43 - 51, http://dx.doi.org/10.1007/978-3-031-22532-1_6
, 2023, 'History of Flow Batteries', in Flow Batteries from Fundamentals to Applications Volume 1 2 and 3, pp. 29 - 52, http://dx.doi.org/10.1002/9783527832767.ch2
, 2023, 'Monitoring Cell Conditions and Anode Freeze Dissolution with Model-Based Soft Sensor After Anode Change', in , pp. 87 - 94, http://dx.doi.org/10.1007/978-3-031-22532-1_11
, 2023, 'Next-Generation Vanadium Flow Batteries', in Flow Batteries from Fundamentals to Applications Volume 1 2 and 3, pp. 673 - 687, http://dx.doi.org/10.1002/9783527832767.ch30
, 2023, 'The History of the UNSW All-Vanadium Flow Battery Development', in Flow Batteries from Fundamentals to Applications Volume 1 2 and 3, pp. 509 - 538, http://dx.doi.org/10.1002/9783527832767.ch22
, 2022, 'Vanadium Redox Flow Batteries', in Gabeza L (ed.), Encyclopedia of Energy Storage, Elsevier, pp. 407 - 422, https://doi.org/10.1016/B978-0-12-819723-3.00050-0
, 2018, 'Flow Batteries: Vanadium and Beyond', in Redox Flow Batteries - Fundamentals and Applications
, 2017, 'Flow Batteries', in Redox Flow Batteries, CRC Press, pp. 327 - 354, http://dx.doi.org/10.1201/9781315152684-9
, 2016, 'Modeling the mass and energy balance of different aluminium smelting cell technologies', in Light Metals 2012, pp. 929 - 934, http://dx.doi.org/10.1007/978-3-319-48179-1_161
, 2016, 'Reduction of HF Emissions from the TRIMET Aluminum Smelter (Optimizing Dry Scrubber Operations and Its Impact on Process Operations)', in Essential Readings in Light Metals, Springer International Publishing, pp. 968 - 974, http://dx.doi.org/10.1007/978-3-319-48156-2_143
, 2015, 'Redox Flow Batteries', in Moseley P; Garche J (ed.), Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Elsevier, Amsterdam, pp. 309 - 336, https://books.google.com.au/books?hl=en&lr=&id=N0Z9AwAAQBAJ&oi=fnd&pg=PP1&dq=Electrochemical+Energy+Storage+for+Renewable+Sources+and+Grid+Balancing&ots=-3xObopTtv&sig=aAvNnXLM7XiWtnp6JCJJcMgbzPY#v=onepage&q=Electrochemical%20Energy%20Storage%20for%20Renewable%20Sources%20and%20Grid%20Balancing&f=false
, 2015, 'Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage', in Advances in Batteries for Medium and Large Scale Energy Storage Types and Applications, pp. 329 - 386, http://dx.doi.org/10.1016/B978-1-78242-013-2.00010-8
, 2015, 'Chapter 10 Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage', in Advances in Batteries for Medium and Large-Scale Energy Storage, Elsevier, pp. 329 - 386, http://dx.doi.org/10.1016/b978-1-78242-013-2.00010-8
, 2015, 'Chapter 17 Redox Flow Batteries', in Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Elsevier, pp. 309 - 336, http://dx.doi.org/10.1016/b978-0-444-62616-5.00017-6
, 2014, 'Vanadium Redox Flow Batteries', in Menictas C; Skyllas-Kazacos M; Lim T (ed.), Advances in batteries for medium- and large-scale energy storage, Woodhead Pub Limited
, 2014, 'Advanced Batteries and Improvements in Electrode Materials', in Electrochemically Enabled Sustainability, CRC Press, pp. 268 - 333, http://dx.doi.org/10.1201/b17062-11
, 2014, 'Physical Properties of Negative Half-Cell Electrolytes in the Vanadium Redox Flow Battery', in Electrochemically Enabled Sustainability, CRC Press, pp. 408 - 441, http://dx.doi.org/10.1201/b17062-14
, 2013, '12 Redox flow batteries for medium- to large-scale energy storage', in Electricity Transmission, Distribution and Storage Systems, Elsevier, pp. 398 - 441, http://dx.doi.org/10.1533/9780857097378.3.398
, 2013, 'Contributor contact details', in Electricity Transmission, Distribution and Storage Systems, Elsevier, pp. xi - xiii, http://dx.doi.org/10.1016/b978-1-84569-784-6.50016-0
, 2013, 'Redox Flow Batteries for Medium to Large Scale Energy Storage', in Melhem Z (ed.), Electricity Transmission, Distribution and Storage Systems, Woodhead Pub Limited, pp. 398 - 441
, 2012, 'Modeling the Mass and Energy Balance of Different Aluminium Smelting Cell Technologies', in , Wiley, pp. 929 - 934, http://dx.doi.org/10.1002/9781118359259.ch161
, 2010, '10 Electro-chemical energy storage technologies for wind energy systems', in Stand-Alone and Hybrid Wind Energy Systems, Elsevier, pp. 323 - 365, http://dx.doi.org/10.1533/9781845699628.2.323
, 2010, 'Contributor contact details', in Stand-Alone and Hybrid Wind Energy Systems, Elsevier, pp. xiii - xv, http://dx.doi.org/10.1016/b978-1-84569-527-9.50018-4
, 2010, 'Electro-chemical energy storage technologies for wind energy systems', in Kaldellis JK (ed.), Stand-alone and hybrid wind energy systems, Woodhead Publishing Limited, Oxford UK, pp. 323 - 326
, 2009, 'Secondary Batteries - Flow Systems', in Encyclopedia of Electrochemical Power Sources, pp. 444 - 453, http://dx.doi.org/10.1016/B978-044452745-5.00177-5
, 2009, 'Vandium Redox-Flow Batteries', in Dyer CK; Moseley PT; Ogumi Z; Rand DAJ; Scrosati B; Garche J (ed.), Encyclopedia of Electrochemical Power Sources, Elsevier BV, Amsterdam, pp. 444 - 453
Edited Books
Roth C; Noack J; Skyllas‐Kazacos M, (eds.), 2023, Flow Batteries: From Fundamentals to Applications, Wiley, http://dx.doi.org/10.1002/9783527832767
Journal articles
, 2025, 'Economic model predictive control of vanadium redox flow batteries for power arbitrage', Journal of Energy Storage, 137, http://dx.doi.org/10.1016/j.est.2025.118567
, 2025, 'H∞-Extended Kalman filter for the aluminium smelting process with boundness analysis of the estimation error matrix', Control Engineering Practice, 164, http://dx.doi.org/10.1016/j.conengprac.2025.106500
, 2025, 'Aqueous iron-based redox flow batteries for large-scale energy storage', National Science Review, 12, http://dx.doi.org/10.1093/nsr/nwaf218
, 2025, 'Electrical safety evaluation of electrolyte leakage of vanadium flow batteries', Journal of Energy Storage, 123, http://dx.doi.org/10.1016/j.est.2025.116675
, 2024, 'An electrochemical stack model for aqueous organic flow battery: The MV/TEMPTMA system', Applied Energy, 375, http://dx.doi.org/10.1016/j.apenergy.2024.124024
, 2024, 'An Electrochemical System Model for Aqueous Organic Flow Batteries: The TEMPTMA/MV System', ECS Meeting Abstracts, MA2024-02, pp. 6 - 6, http://dx.doi.org/10.1149/ma2024-0216mtgabs
, 2024, 'Enhancing Electrolyte Stability and Performance in Vanadium Redox Flow Batteries through Inorganic Additives Investigation', ECS Meeting Abstracts, MA2024-02, pp. 2 - 2, http://dx.doi.org/10.1149/ma2024-0212mtgabs
, 2024, 'Optimizing Vanadium Redox Flow Battery Performance with Embroidered Porous Electrodes and Corrugated Bipolar Plates', ECS Meeting Abstracts, MA2024-02, pp. 1 - 1, http://dx.doi.org/10.1149/ma2024-0211mtgabs
, 2024, 'Ore-Chestrating Net-Zero: A Techno-Economic Comparison of Lithium Batteries and Vanadium Flow Batteries in a Western Australian Mine Site', ECS Meeting Abstracts, MA2024-02, pp. 5039 - 5039, http://dx.doi.org/10.1149/ma2024-02105039mtgabs