ORCID as entered in ROS

Select Publications
Qiu W; Zheng X; Mustapha K, 2024, Numerical approximations for a hyperbolic integrodifferential equation with a non-positive variable-sign kernel and nonlinear-nonlocal damping, http://dx.doi.org/10.48550/arxiv.2412.07394
Dick J; Gao H; McLean W; Mustapha K, 2024, Time-fractional diffusion equations with randomness, and efficient numerical estimations of expected values, http://dx.doi.org/10.48550/arxiv.2409.00893
Mustapha K; McLean W; Dick J, 2024, An $\alpha$-robust and second-order accurate scheme for a subdiffusion equation, http://dx.doi.org/10.48550/arxiv.2401.04946
Karaa S; Mustapha K; Ahmed N, 2023, A mixed FEM for a time-fractional Fokker-Planck model, http://dx.doi.org/10.48550/arxiv.2310.17350
McLean W; Mustapha K, 2022, Error Profile for Discontinuous Galerkin Time Stepping of Parabolic PDEs, http://arxiv.org/abs/2208.03846v2
Mustapha K; Knio OM; Maître OPL, 2021, A second-order accurate numerical scheme for a time-fractional Fokker-Planck equation, http://dx.doi.org/10.48550/arxiv.2106.14146
McLean W; Mustapha K, 2020, Uniform stability for a spatially-discrete, subdiffusive Fokker-Planck equation, http://dx.doi.org/10.48550/arxiv.2012.13860
Furati KM; Mustapha K; Sarumi IO; Iyiola OS, 2019, Inverse source in two-parameter anomalous diffusion, numerical algorithms and simulations over graded time-meshes, http://dx.doi.org/10.48550/arxiv.1912.06614
Mustapha K, 2019, An L1 approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes, http://dx.doi.org/10.48550/arxiv.1909.06739
Le KN; McLean W; Mustapha K, 2019, A semidiscrete finite element approximation of a time-fractional Fokker-Planck equation with nonsmooth initial data, http://dx.doi.org/10.48550/arxiv.1902.03204
McLean W; Mustapha K; Ali R; Knio OM, 2019, Regularity theory for time-fractional advection-diffusion-reaction equations, http://dx.doi.org/10.48550/arxiv.1902.00850
McLean W; Mustapha K; Ali R; Knio O, 2018, Well-posedness of time-fractional, advection-diffusion-reaction equations, http://dx.doi.org/10.48550/arxiv.1810.04836
Allouch S; Lucchesi M; Maître OPL; Mustapha KA; Knio OM, 2017, Particle Simulation of Fractional Diffusion Equations, http://dx.doi.org/10.48550/arxiv.1707.03871
Mustapha K; Furati K; Knio OM; Maitre OL, 2017, A finite difference method for space fractional differential equations with variable diffusivity coefficient, http://dx.doi.org/10.48550/arxiv.1706.00971
Mustapha K, 2016, FEM for time-fractional diffusion equations, novel optimal error analyses, http://dx.doi.org/10.48550/arxiv.1610.05621
Karaa S; Mustapha K; Pani AK, 2016, Optimal error analysis of a FEM for fractional diffusion problems by energy arguments, http://dx.doi.org/10.48550/arxiv.1605.09104
Furati KM; Iyiola OS; Mustapha K, 2016, An inverse source problem for a two-parameter anomalous diffusion with local time datum, http://dx.doi.org/10.48550/arxiv.1604.06886
Mustapha K; Abdallah B; Furati KM; Nour M, 2015, A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients, http://dx.doi.org/10.48550/arxiv.1511.00163
Karaa S; Mustapha K; Pani AK, 2015, Finite volume element method for two-dimensional fractional subdiffusion problems, http://dx.doi.org/10.48550/arxiv.1510.07377
Le KN; McLean W; Mustapha K, 2015, Numerical solution of the time-fractional Fokker-Planck equation with general forcing, http://dx.doi.org/10.48550/arxiv.1507.05706
Mustapha K; Nour M; Cockburn B, 2014, Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems, http://dx.doi.org/10.48550/arxiv.1412.2098
Cockburn B; Mustapha K, 2014, A hybridizable discontinuous Galerkin method for fractional diffusion problems, http://dx.doi.org/10.48550/arxiv.1409.7383
Mustapha K, 2014, Time-stepping discontinuous Galerkin methods for fractional diffusion problems, http://dx.doi.org/10.48550/arxiv.1409.6976
Mustapha K; Abdallah B; Furati K, 2014, A discontinuous Petrov-Galerkin method for time-fractional diffusion equations, http://dx.doi.org/10.48550/arxiv.1409.1935
McLean W; Mustapha K, 2014, Time-stepping error bounds for fractional diffusion problems with non-smooth initial data, http://dx.doi.org/10.48550/arxiv.1405.2140
Mustapha K, 2013, A Superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels, http://dx.doi.org/10.48550/arxiv.1301.6778
Mustapha K; McLean W, 2012, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, http://dx.doi.org/10.48550/arxiv.1206.2686