ORCID as entered in ROS

Select Publications
2008, 'Ranking queries on uncertain data: a probabilistic threshold approach', in 2008 ACM SIGMOD international conference, Vancouver BC Canada, presented at ACM SIGMOD international conference on management of data, 2008, Vancouver BC Canada, 09 June 2008 - 12 June 2008
,2008, 'Efficiently answering probabilistic threshold top-k queries on uncertain data', in 24th international conference on data engineering, Mexico, presented at IEEE 24th International Conference on Data Engineering, ICDE`08 2008, Mexico, 07 April 2008 - 12 April 2008
,Zhang W; Tung A; Zheng Z; Yang Z; Wang X; Guo H, (eds.), 2024, 'Web and Big Data - 8th International Joint Conference, APWeb-WAIM 2024, Jinhua, China, August 30 - September 1, 2024, Proceedings, Part I', presented at APWeb-WAIM 2024, 30 August 2024, http://dx.doi.org/10.1007/978-981-97-7232-2
Zhang W; Tung A; Zheng Z; Yang Z; Wang X; Guo H, (eds.), 2024, 'Web and Big Data - 8th International Joint Conference, APWeb-WAIM 2024, Jinhua, China, August 30 - September 1, 2024, Proceedings, Part II', presented at APWeb-WAIM 2024, 30 August 2024, http://dx.doi.org/10.1007/978-981-97-7235-3
Zhang W; Tung A; Zheng Z; Yang Z; Wang X; Guo H, (eds.), 2024, 'Web and Big Data - 8th International Joint Conference, APWeb-WAIM 2024, Jinhua, China, August 30 - September 1, 2024, Proceedings, Part III', presented at APWeb-WAIM 2024, 30 August 2024, http://dx.doi.org/10.1007/978-981-97-7238-4
Zhang W; Tung A; Zheng Z; Yang Z; Wang X; Guo H, (eds.), 2024, 'Web and Big Data - 8th International Joint Conference, APWeb-WAIM 2024, Jinhua, China, August 30 - September 1, 2024, Proceedings, Part IV', presented at APWeb-WAIM 2024, 30 August 2024, http://dx.doi.org/10.1007/978-981-97-7241-4
Zhang W; Tung A; Zheng Z; Yang Z; Wang X; Guo H, (eds.), 2024, 'Web and Big Data - 8th International Joint Conference, APWeb-WAIM 2024, Jinhua, China, August 30 - September 1, 2024, Proceedings, Part V', presented at APWeb-WAIM 2024, 30 August 2024, http://dx.doi.org/10.1007/978-981-97-7244-5
2022, 'ScaleG: A Distributed Disk-based System for Vertex-centric Graph Processing (Extended Abstract)', in Proceedings - International Conference on Data Engineering, Vol. 2022-May, pp. 1511 - 1512, http://dx.doi.org/10.1109/ICDE53745.2022.00132
,2025, Common Neighborhood Estimation over Bipartite Graphs under Local Differential Privacy
,2024, Decentralized Privacy Preservation for Critical Connections in Graphs, http://dx.doi.org/10.48550/arxiv.2405.11713
,2023, Batch Hop-Constrained s-t Simple Path Query Processing in Large Graphs, http://dx.doi.org/10.48550/arxiv.2312.01424
,2023, Efficient Non-Learning Similar Subtrajectory Search, http://dx.doi.org/10.48550/arxiv.2307.10082
,2022, Progressive Hard Negative Masking: From Global Uniformity to Local Tolerance, http://dx.doi.org/10.36227/techrxiv.21203096
,2022, Progressive Hard Negative Masking: From Global Uniformity to Local Tolerance, http://dx.doi.org/10.36227/techrxiv.21203096.v1
,2022, GSim: A Graph Neural Network based Relevance Measure for Heterogeneous Graphs, http://dx.doi.org/10.48550/arxiv.2208.06144
,2022, Balanced Clique Computation in Signed Networks: Concepts and Algorithms, http://dx.doi.org/10.48550/arxiv.2204.00515
,2021, Towards User Engagement Dynamics in Social Networks, http://dx.doi.org/10.48550/arxiv.2110.12193
,2021, Detecting Communities from Heterogeneous Graphs: A Context Path-based Graph Neural Network Model, http://dx.doi.org/10.48550/arxiv.2109.02058
,2021, HUGE: An Efficient and Scalable Subgraph Enumeration System, http://dx.doi.org/10.48550/arxiv.2103.14294
,2020, Knowledge-guided Deep Reinforcement Learning for Interactive Recommendation, http://dx.doi.org/10.48550/arxiv.2004.08068
,2019, A Survey and Experimental Analysis of Distributed Subgraph Matching, http://dx.doi.org/10.48550/arxiv.1906.11518
,2017, Effective Multi-Query Expansions: Collaborative Deep Networks for Robust Landmark Retrieval, http://dx.doi.org/10.48550/arxiv.1701.05003
,Efficient Continuous kNN Join over Dynamic High-dimensional Data [v1], http://dx.doi.org/10.21203/rs.3.rs-2572561/v1
,Efficient Continuous kNN Join over Dynamic High-dimensional Data [v2], http://dx.doi.org/10.21203/rs.3.rs-2572561/v2
,Efficient Continuous kNN Join over Dynamic High-dimensional Data [v3], http://dx.doi.org/10.21203/rs.3.rs-2572561/v3
,Efficient Continuous kNN Join over Dynamic High-dimensional Data [v4], http://dx.doi.org/10.21203/rs.3.rs-2572561/v4
,