Select Publications

Preprints

Drewes M; Georis Y; Klasen M; Pierobon G; Wong YYY, 2024, Towards a precision calculation of $N_{\rm eff}$ in the Standard Model IV: Impact of positronium formation, http://dx.doi.org/10.48550/arxiv.2411.14091

Upadhye A; Mosbech MR; Pierobon G; Wong YYY, 2024, Everything hot everywhere all at once: Neutrinos and hot dark matter as a single effective species, http://dx.doi.org/10.48550/arxiv.2410.05815

Pierobon G; Mosbech MR; Upadhye A; Wong YYY, 2024, One trick to treat them all: SuperEasy linear response for any hot dark matter in $N$-body simulations, http://dx.doi.org/10.48550/arxiv.2410.05816

Drewes M; Georis Y; Klasen M; Wiggering LP; Wong YYY, 2024, Towards a precision calculation of $N_{\rm eff}$ in the Standard Model III: Improved estimate of NLO contributions to the collision integral, http://dx.doi.org/10.48550/arxiv.2402.18481

Upadhye A; Kwan J; McCarthy IG; Salcido J; Moran KR; Lawrence E; Wong YYY, 2023, Cosmic-Enu: An emulator for the non-linear neutrino power spectrum, http://dx.doi.org/10.48550/arxiv.2311.11240

Eggemeier B; O'Hare CAJ; Pierobon G; Redondo J; Wong YYY, 2022, Axion minivoids and implications for direct detection, http://dx.doi.org/10.48550/arxiv.2212.00560

Chen JZ; Upadhye A; Wong YYY, 2022, Flows For The Masses: A multi-fluid non-linear perturbation theory for massive neutrinos, http://dx.doi.org/10.48550/arxiv.2210.16020

Chen JZ; Mosbech MR; Upadhye A; Wong YYY, 2022, Hybrid multi-fluid-particle simulations of the cosmic neutrino background, http://dx.doi.org/10.48550/arxiv.2210.16012

Mosbech MR; Jenkins AC; Bose S; Boehm C; Sakellariadou M; Wong YYY, 2022, Gravitational-wave event rates as a new probe for dark matter microphysics, http://dx.doi.org/10.48550/arxiv.2207.14126

Mosbech MR; Boehm C; Wong YYY, 2022, Probing dark matter interactions with 21cm observations, http://dx.doi.org/10.48550/arxiv.2207.03107

Chen JZ; Oldengott IM; Pierobon G; Wong YYY, 2022, Weaker yet again: mass spectrum-consistent cosmological constraints on the neutrino lifetime, http://dx.doi.org/10.48550/arxiv.2203.09075

O'Hare CAJ; Pierobon G; Redondo J; Wong YYY, 2021, Simulations of axion-like particles in the post-inflationary scenario, http://dx.doi.org/10.48550/arxiv.2112.05117

Bennett JJ; Buldgen G; de Salas PF; Drewes M; Gariazzo S; Pastor S; Wong YYY, 2020, Towards a precision calculation of $N_{\rm eff}$ in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED, http://dx.doi.org/10.48550/arxiv.2012.02726

Chen JZ; Upadhye A; Wong YYY, 2020, One line to run them all: SuperEasy massive neutrino linear response in $N$-body simulations, http://dx.doi.org/10.48550/arxiv.2011.12504

Chen JZ; Upadhye A; Wong YYY, 2020, The cosmic neutrino background as a collection of fluids in large-scale structure simulations, http://dx.doi.org/10.48550/arxiv.2011.12503

Mosbech MR; Boehm C; Hannestad S; Mena O; Stadler J; Wong YYY, 2020, The full Boltzmann hierarchy for dark matter-massive neutrino interactions, http://dx.doi.org/10.48550/arxiv.2011.04206

Barenboim G; Chen JZ; Hannestad S; Oldengott IM; Tram T; Wong YYY, 2020, Invisible neutrino decay in precision cosmology, http://dx.doi.org/10.48550/arxiv.2011.01502

Hannestad S; Upadhye A; Wong YYY, 2020, Spoon or slide? The non-linear matter power spectrum in the presence of massive neutrinos, http://dx.doi.org/10.48550/arxiv.2006.04995

Bennett JJ; Buldgen G; Drewes M; Wong YYY, 2019, Towards a precision calculation of the effective number of neutrinos $N_{\rm eff}$ in the Standard Model I: The QED equation of state, http://dx.doi.org/10.48550/arxiv.1911.04504

Hannestad S; Wong YYY, 2019, Fitting functions on the cheap: the relative nonlinear matter power spectrum, http://dx.doi.org/10.48550/arxiv.1907.01125

Diacoumis JAD; Wong YYY, 2018, Prior dependence of cosmological constraints on dark matter-radiation interactions, http://dx.doi.org/10.48550/arxiv.1811.11408

Diacoumis JAD; Wong YYY, 2018, Trading kinetic energy: How late kinetic decoupling of dark matter changes $N_{\textrm{eff}}$, http://dx.doi.org/10.48550/arxiv.1811.05601

Diacoumis J; Wong Y, 2017, CMB spectral distortions as a novel way to probe the small-scale structure problems, http://dx.doi.org/10.48550/arxiv.1710.03121

Diacoumis JAD; Wong YYY, 2017, Using CMB spectral distortions to distinguish between dark matter solutions to the small-scale crisis, http://dx.doi.org/10.48550/arxiv.1707.07050

Oldengott IM; Tram T; Rampf C; Wong YYY, 2017, Interacting neutrinos in cosmology: exact description and constraints, http://dx.doi.org/10.48550/arxiv.1706.02123

Hannestad S; Hansen RS; Tram T; Wong YYY, 2015, Active-sterile neutrino oscillations in the early Universe with full collision terms, http://dx.doi.org/10.48550/arxiv.1506.05266

Boriero D; Das S; Wong YYY, 2015, How CMB and large-scale structure constrain chameleon interacting dark energy, http://dx.doi.org/10.48550/arxiv.1505.03154

Archidiacono M; Basse T; Hamann J; Hannestad S; Raffelt G; Wong YYY, 2015, Future cosmological sensitivity for hot dark matter axions, http://dx.doi.org/10.48550/arxiv.1502.03325

Führer F; Wong YYY, 2014, Higher-order massive neutrino perturbations in large-scale structure, http://dx.doi.org/10.48550/arxiv.1412.2764

Basse T; Hamann J; Hannestad S; Wong YYY, 2014, Getting leverage on inflation with a large photometric redshift survey, http://dx.doi.org/10.48550/arxiv.1409.3469

Oldengott IM; Rampf C; Wong YYY, 2014, Boltzmann hierarchy for interacting neutrinos I: formalism, http://dx.doi.org/10.48550/arxiv.1409.1577

Amendola L; Bjaelde OE; Valkenburg W; Wong YYY, 2013, How real-time cosmology can distinguish between different anisotropic models, http://dx.doi.org/10.48550/arxiv.1307.2377

Archidiacono M; Hannestad S; Mirizzi A; Raffelt G; Wong YYY, 2013, Axion hot dark matter bounds after Planck, http://dx.doi.org/10.48550/arxiv.1307.0615

Basse T; Bjaelde OE; Hamann J; Hannestad S; Wong YYY, 2013, Dark energy properties from large future galaxy surveys, http://dx.doi.org/10.48550/arxiv.1304.2321

Hamann J; Hannestad S; Wong YYY, 2012, Measuring neutrino masses with a future galaxy survey, http://dx.doi.org/10.48550/arxiv.1209.1043

Basse T; Bjaelde OE; Hannestad S; Wong YYY, 2012, Confronting the sound speed of dark energy with future cluster surveys, http://dx.doi.org/10.48550/arxiv.1205.0548

Rampf C; Wong YYY, 2012, Lagrangian perturbations and the matter bispectrum II: the resummed one-loop correction to the matter bispectrum, http://dx.doi.org/10.48550/arxiv.1203.4261

Arina C; Hamann J; Trotta R; Wong YYY, 2011, Evidence for dark matter modulation in CoGeNT?, http://dx.doi.org/10.48550/arxiv.1111.3238

Hamann J; Hannestad S; Raffelt GG; Wong YYY, 2011, Sterile neutrinos with eV masses in cosmology -- how disfavoured exactly?, http://dx.doi.org/10.48550/arxiv.1108.4136

Arina C; Hamann J; Wong YYY, 2011, A Bayesian view of the current status of dark matter direct searches, http://dx.doi.org/10.48550/arxiv.1105.5121

Abazajian KN; Calabrese E; Cooray A; De Bernardis F; Dodelson S; Friedland A; Fuller GM; Hannestad S; Keating BG; Linder EV; Lunardini C; Melchiorri A; Miquel R; Pierpaoli E; Pritchard J; Serra P; Takada M; Wong YYY, 2011, Cosmological and Astrophysical Neutrino Mass Measurements, http://dx.doi.org/10.48550/arxiv.1103.5083

Basse T; Bjaelde OE; Wong YYY, 2010, Spherical collapse of dark energy with an arbitrary sound speed, http://dx.doi.org/10.48550/arxiv.1009.0010

Hamann J; Hannestad S; Raffelt GG; Tamborra I; Wong YYY, 2010, Cosmology seeking friendship with sterile neutrinos, http://dx.doi.org/10.48550/arxiv.1006.5276

Brandbyge J; Hannestad S; Haugboelle T; Wong YYY, 2010, Neutrinos in Non-linear Structure Formation - The Effect on Halo Properties, http://dx.doi.org/10.48550/arxiv.1004.4105

Hannestad S; Mirizzi A; Raffelt GG; Wong YYY, 2010, Neutrino and axion hot dark matter bounds after WMAP-7, http://dx.doi.org/10.48550/arxiv.1004.0695

Hamann J; Hannestad S; Lesgourgues J; Rampf C; Wong YYY, 2010, Cosmological parameters from large scale structure - geometric versus shape information, http://dx.doi.org/10.48550/arxiv.1003.3999

Hannestad S; Hamann J; Mirizzi A; Raffelt GG; Wong YYY, 2009, Cosmological axion bounds, http://dx.doi.org/10.48550/arxiv.0910.5706

Raffelt G; Hannestad S; Mirizzi A; Wong YYY, 2008, Axion hot dark matter bounds, http://dx.doi.org/10.48550/arxiv.0808.0814

Hamann J; Hannestad S; Sloth MS; Wong YYY, 2008, Observing trans-Planckian ripples in the primordial power spectrum with future large scale structure probes, http://dx.doi.org/10.48550/arxiv.0807.4528

Hamann J; Hannestad S; Melchiorri A; Wong YYY, 2008, Nonlinear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation, http://dx.doi.org/10.48550/arxiv.0804.1789


Back to profile page