Select Publications
Book Chapters
2024, 'Temperature‐Dependent Lifetime and Photoluminescence Measurements', in , Wiley, pp. 271 - 289, http://dx.doi.org/10.1002/9781119578826.ch17
,2024, 'Machine Learning for Photovoltaic Applications', in Photovoltaic Solar Energy: From Fundamentals to Applications, Volume 2, pp. 303 - 318, http://dx.doi.org/10.1002/9781119578826.ch19
,2024, 'Temperature-Dependent Lifetime and Photoluminescence Measurements', in Photovoltaic Solar Energy: From Fundamentals to Applications, Volume 2, pp. 273 - 289, http://dx.doi.org/10.1002/9781119578826.ch17
,Journal articles
2024, 'A contactless method of emitter sheet resistance measurement for silicon wafers', Solar Energy Materials and Solar Cells, 278, http://dx.doi.org/10.1016/j.solmat.2024.113209
,2024, 'Deep learning-based perspective distortion correction for outdoor photovoltaic module images', Solar Energy Materials and Solar Cells, 277, http://dx.doi.org/10.1016/j.solmat.2024.113107
,2024, 'Determination of temperature- and carrier-dependent surface recombination in silicon', Solar RRL, http://dx.doi.org/10.1002/solr.202400191
,2024, 'Extracting the parameters of two-energy-level defects in silicon wafers using machine learning models', Solar Energy Materials and Solar Cells, http://dx.doi.org/10.1016/j.solmat.2024.113123
,2024, 'Machine learning for advanced characterisation of silicon photovoltaics: A comprehensive review of techniques and applications', Renewable and Sustainable Energy Reviews, 202, http://dx.doi.org/10.1016/j.rser.2024.114617
,2024, 'Enhancing solar cell production line monitoring through advanced statistical analysis', Solar Energy Materials and Solar Cells, 274, http://dx.doi.org/10.1016/j.solmat.2024.112950
,2024, 'Simplified method for the conversion of luminescence signals from silicon wafers and solar cells into implied voltages', Solar Energy Materials and Solar Cells, 269, http://dx.doi.org/10.1016/j.solmat.2024.112716
,2024, 'A collaborative framework for unifying typical multidimensional solar cell simulations – Part I. Ten common simulation steps and representing variables', Progress in Photovoltaics: Research and Applications, 32, pp. 330 - 345, http://dx.doi.org/10.1002/pip.3779
,2024, 'Cu2(Thiourea)Br2 complex as a multifunctional interfacial layer for reproducible PTAA‐based p‐i‐n perovskite solar cells', Solar RRL, http://dx.doi.org/10.1002/solr.202300920
,2024, 'Electron contact interlayers for low-temperature-processed crystalline silicon solar cells', Progress in Photovoltaics: Research and Applications, http://dx.doi.org/10.1002/pip.3768
,2024, 'Reducing voltage loss via dipole tuning for electron-transport in efficient and stable perovskite-silicon tandem solar cells', Advanced Energy Materials, http://dx.doi.org/10.1002/aenm.202401029
,2024, 'Surface saturation current densities of perovskite thin films from Suns-photoluminescence quantum yield measurements', Progress in Photovoltaics: Research and Applications, http://dx.doi.org/10.1002/pip.3767
,2024, 'The role of luminescent coupling in monolithic perovskite/silicon tandem solar cells', Small, http://dx.doi.org/10.1002/smll.202403461
,2024, 'Reducing voltage loss via dipole tuning for electron‐transport in efficient and stable perovskite‐silicon tandem solar cells', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202470175
,2023, 'Advanced analysis of internal quantum efficiency measurements using machine learning', Progress in Photovoltaics: Research and Applications, 31, pp. 790 - 802, http://dx.doi.org/10.1002/pip.3683
,2023, 'Deep learning method for enhancing luminescence image resolution', Solar Energy Materials and Solar Cells, 257, pp. 112357, http://dx.doi.org/10.1016/j.solmat.2023.112357
,2023, 'Deep learning model to denoise luminescence images of silicon solar cells', Advanced Science, 10, http://dx.doi.org/10.1002/advs.202300206
,2023, 'Recombination in passivating contacts: Investigation into the impact of the contact work function on the obtained passivation', Solar RRL, 7, http://dx.doi.org/10.1002/solr.202201050
,2023, 'Improvements and gaps in the empirical expressions for the fill factor of modern industrial solar cells', Solar Energy Materials and Solar Cells, 253, pp. 112183, http://dx.doi.org/10.1016/j.solmat.2023.112183
,2023, 'Temperature and illumination dependence of silicon heterojunction solar cells with a wide range of wafer resistivities', Progress in Photovoltaics: Research and Applications, 31, pp. 536 - 545, http://dx.doi.org/10.1002/pip.3657
,2023, 'Editorial: Passivating contact solar cells', Progress in Photovoltaics: Research and Applications, 31, pp. 309, http://dx.doi.org/10.1002/pip.3682
,2023, 'Investigation of light-induced degradation in gallium- and indium-doped Czochralski silicon', Solar Energy Materials and Solar Cells, 251, http://dx.doi.org/10.1016/j.solmat.2022.112121
,2023, 'Implied open-circuit voltage imaging via a single bandpass filter method – its first application in perovskite solar cells', Advanced Functional Materials, 33, http://dx.doi.org/10.1002/adfm.202210592
,2022, 'Deep learning extraction of the temperature-dependent parameters of bulk defects', ACS Applied Materials and Interfaces, 14, pp. 48647 - 48657, http://dx.doi.org/10.1021/acsami.2c12162
,2022, 'Temperature sensitivity maps of silicon wafers from photoluminescence imaging: The effect of gettering and hydrogenation', Progress in Photovoltaics: Research and Applications, 30, pp. 1298 - 1311, http://dx.doi.org/10.1002/pip.3579
,2022, 'Outdoor luminescence imaging of field-deployed PV modules', Progress in Energy, 4, http://dx.doi.org/10.1088/2516-1083/ac9a33
,2022, 'PTAA as efficient hole transport materials in perovskite solar cells: A review', Solar RRL, 6, http://dx.doi.org/10.1002/solr.202200234
,2022, 'Illumination-dependent temperature coefficients of the electrical parameters of modern silicon solar cell architectures', Nano Energy, 98, http://dx.doi.org/10.1016/j.nanoen.2022.107221
,2022, 'Introduction: Focus on characterisation and reliability of photovoltaic modules in utility-scale plants', Progress in Energy, 4, pp. 030201 - 030201, http://dx.doi.org/10.1088/2516-1083/ac72eb
,2022, 'Automated efficiency loss analysis by luminescence image reconstruction using generative adversarial networks', Joule, 6, pp. 1320 - 1332, http://dx.doi.org/10.1016/j.joule.2022.05.001
,2022, 'Advanced photoluminescence imaging using non-uniform excitation', Progress in Photovoltaics: Research and Applications, 30, pp. 349 - 359, http://dx.doi.org/10.1002/pip.3488
,2022, 'Bulk defect characterization in metalized solar cells using temperature-dependent Suns-Voc measurements', Solar Energy Materials and Solar Cells, 236, http://dx.doi.org/10.1016/j.solmat.2021.111530
,2022, 'Half and full solar cell efficiency binning by deep learning on electroluminescence images', Progress in Photovoltaics: research and applications, 30, pp. 276 - 287, http://dx.doi.org/10.1002/pip.3484
,2022, 'Temperature‐dependent performance of silicon heterojunction solar cells with transition‐metal‐oxide‐based selective contacts', Progress in Photovoltaics: Research and Applications, 30, pp. 981 - 981, http://dx.doi.org/10.1002/pip.3509
,2022, 'Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells', Nature Energy, http://dx.doi.org/10.1038/s41560-022-01078-7
,2022, 'Bulk lifetime and doping in crystalline silicon via two-photon absorption time-resolved photoluminescence decay', IEEE Journal of Photovoltaics, 12, pp. 1 - 9, http://dx.doi.org/10.1109/jphotov.2021.3133545
,2021, 'Impurity gettering by silicon nitride films: Kinetics, mechanisms, and simulation', ACS Applied Energy Materials, 4, pp. 10849 - 10856, http://dx.doi.org/10.1021/acsaem.1c01826
,2021, 'Investigation of minority carrier traps in p-type mc-Si: Effect of firing and laser annealing', Solar Energy Materials and Solar Cells, 232, http://dx.doi.org/10.1016/j.solmat.2021.111341
,2021, 'Selective current-injected electroluminescence imaging for series resistance feature identification', Solar RRL, 5, http://dx.doi.org/10.1002/solr.202100486
,2021, 'A dynamic calibration method for injection-dependent charge carrier lifetime measurements', Small Methods, 5, http://dx.doi.org/10.1002/smtd.202100440
,2021, 'Spatially resolved defects parameters of the D1 dislocation center in silicon using temperature- and injection-dependent hyperspectral photoluminescence mapping', Solar Energy Materials and Solar Cells, 229, http://dx.doi.org/10.1016/j.solmat.2021.111079
,2021, 'Investigation of the selectivity-mechanism of copper (I) sulfide (Cu2S) as a dopant-free carrier selective contact for silicon solar cells', Applied Surface Science, 555, http://dx.doi.org/10.1016/j.apsusc.2021.149727
,2021, 'Temperature-dependent performance of silicon solar cells with polysilicon passivating contacts', Solar Energy Materials and Solar Cells, 225, pp. 111020, http://dx.doi.org/10.1016/j.solmat.2021.111020
,2021, 'Unravelling the silicon-silicon dioxide interface under different operating conditions', Solar Energy Materials and Solar Cells, 224, pp. 111021, http://dx.doi.org/10.1016/j.solmat.2021.111021
,2021, 'Enhanced hole-carrier selectivity in wide bandgap halide perovskite PV devices for indoor IoT applications', Advanced Functional Materials, pp. 2008908 - 2008908, http://dx.doi.org/10.1002/adfm.202008908
,2021, 'Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells', Nature Energy, 6, pp. 194 - 202, http://dx.doi.org/10.1038/s41560-020-00768-4
,2021, 'On the correlation between light-induced degradation and minority carrier traps in boron-doped Czochralski silicon', ACS Applied Materials & Interfaces, 13, pp. 6140 - 6146, http://dx.doi.org/10.1021/acsami.0c17549
,