Select Publications

Journal articles

Li Y; Li J; Huang J; Chen J; Kong Y; Yang B; Li Z; Lei L; Chai G; Wen Z; Dai L; Hou Y, 2021, 'Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites', Angewandte Chemie - International Edition, 60, pp. 9078 - 9085, http://dx.doi.org/10.1002/anie.202100526

Li Y; Li J; Huang J; Chen J; Kong Y; Yang B; Li Z; Lei L; Chai G; Wen Z; Dai L; Hou Y, 2021, 'Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single‐Atomic Iron Sites', Angewandte Chemie, 133, pp. 9160 - 9167, http://dx.doi.org/10.1002/ange.202100526

Kim J; Seong A; Yang Y; Joo S; Kim C; Jeon DH; Dai L; Kim G, 2021, 'Indirect surpassing CO2 utilization in membrane-free CO2 battery', Nano Energy, 82, http://dx.doi.org/10.1016/j.nanoen.2020.105741

Zhou Y; Qi H; Yang J; Bo Z; Huang F; Islam MS; Lu X; Dai L; Amal R; Wang CH; Han Z, 2021, 'Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage', Energy and Environmental Science, 14, pp. 1854 - 1896, http://dx.doi.org/10.1039/d0ee03167d

Wang X; Ding S; Yue T; Zhu Y; Fang M; Li X; Xiao G; Dai L, 2021, 'Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction', Nano Energy, 82, http://dx.doi.org/10.1016/j.nanoen.2020.105689

Kang YB; Han X; Kim S; Yuan H; Ling N; Ham HC; Dai L; Park HS, 2021, 'Structural Engineering of Ultrathin ReS2on Hierarchically Architectured Graphene for Enhanced Oxygen Reduction', ACS Nano, 15, pp. 5560 - 5566, http://dx.doi.org/10.1021/acsnano.1c00420

Hu C; Dai Q; Dai L, 2021, 'Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage', Cell Reports Physical Science, 2, http://dx.doi.org/10.1016/j.xcrp.2021.100328

Zhou Y; Cheng X; Huang F; Sha Z; Han Z; Chen J; Yang W; Yu Y; Zhang J; Peng S; Wu S; Rider A; Dai L; Wang CH, 2021, 'Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2', Carbon, 172, pp. 272 - 282, http://dx.doi.org/10.1016/j.carbon.2020.10.025

Yu D; Liu D; Shi L; Qiu J; Dai L, 2021, 'High-performance metal-iodine batteries enabled by a bifunctional dendrite-free Li-Na alloy anode', Journal of Materials Chemistry A, 9, pp. 538 - 545, http://dx.doi.org/10.1039/d0ta08072a

Wang B; Liu B; Dai L, 2021, 'Non-N-Doped Carbons as Metal-Free Electrocatalysts', Advanced Sustainable Systems, 5, http://dx.doi.org/10.1002/adsu.202000134

Ye F; Gong L; Long Y; Talapaneni SN; Zhang L; Xiao Y; Liu D; Hu C; Dai L, 2021, 'Topological Defect‐Rich Carbon as a Metal‐Free Cathode Catalyst for High‐Performance Li‐CO2 Batteries (Adv. Energy Mater. 30/2021)', Advanced Energy Materials, 11, http://dx.doi.org/10.1002/aenm.202170120

Cheng R; Colombo RNP; Zhang L; Nguyen DHT; Tilley R; Cordoba De Torresi SI; Dai L; Gooding JJ; Gonçales VR; Goncales V; Dai L, 2020, 'Porous Graphene Oxide Films Prepared via the Breath-Figure Method: A Simple Strategy for Switching Access of Redox Species to an Electrode Surface', ACS Applied Materials and Interfaces, 12, pp. 55181 - 55188, http://dx.doi.org/10.1021/acsami.0c16811

Li T; Hu T; Dai L; Li CM, 2020, 'Metal-free photo- And electro-catalysts for hydrogen evolution reaction', Journal of Materials Chemistry A, 8, pp. 23674 - 23698, http://dx.doi.org/10.1039/d0ta08704a

Ke X; Wang Y; Dai L; Yuan C, 2020, 'Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites', Energy Storage Materials, 33, pp. 309 - 328, http://dx.doi.org/10.1016/j.ensm.2020.07.024

Zhu X; Hu C; Amal R; Dai L; Lu X, 2020, 'Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities', Energy and Environmental Science, 13, pp. 4536 - 4563, http://dx.doi.org/10.1039/d0ee02800b

Zhai Q; Xiang F; Cheng F; Sun Y; Yang X; Lu W; Dai L, 2020, 'Recent advances in flexible/stretchable batteries and integrated devices', Energy Storage Materials, 33, pp. 116 - 138, http://dx.doi.org/10.1016/j.ensm.2020.07.003

Daiyan R; Zhu X; Tong Z; Gong L; Razmjou A; Liu RS; Xia Z; Lu X; Dai L; Amal R, 2020, 'Transforming active sites in nickel–nitrogen–carbon catalysts for efficient electrochemical CO2 reduction to CO', Nano Energy, 78, http://dx.doi.org/10.1016/j.nanoen.2020.105213

Cui Y; Tan X; Xiao K; Zhao S; Bedford NM; Liu Y; Wang Z; Wu KH; Pan J; Saputera WH; Cheong S; Tilley RD; Smith SC; Yun J; Dai L; Amal R; Wang DW, 2020, 'Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity', ACS Energy Letters, 5, pp. 3560 - 3568, http://dx.doi.org/10.1021/acsenergylett.0c01858

Yu D; Goh K; Wang H; Wei L; Jiang W; Zhang Q; Dai L; Chen Y, 2020, 'Author Correction: Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage (Nature Nanotechnology, (2014), 9, 7, (555-562), 10.1038/nnano.2014.93)', Nature Nanotechnology, 15, pp. 811, http://dx.doi.org/10.1038/s41565-020-0718-1

Liu Q; Wang Q; Wang J; Li Z; Liu J; Sun X; Li J; Lei Y; Dai L; Wang P, 2020, 'TpyCo2+-Based Coordination Polymers by Water-Induced Gelling Trigged Efficient Oxygen Evolution Reaction', Advanced Functional Materials, 30, http://dx.doi.org/10.1002/adfm.202000593

Gao Y; Zhang L; Xia Z; Li CM; Dai L, 2020, 'Hole-punching for enhancing electrocatalytic activities of 2D graphene electrodes: Less is more', Journal of Chemical Physics, 153, http://dx.doi.org/10.1063/5.0012709

Zhang C; Dai L, 2020, 'Targeted Defect Synthesis for Improved Electrocatalytic Performance', Chem, 6, pp. 1849 - 1851, http://dx.doi.org/10.1016/j.chempr.2020.07.018

Bian Y; Wang H; Gao Z; Hu J; Liu D; Dai L, 2020, 'A facile approach to high-performance trifunctional electrocatalysts by substrate-enhanced electroless deposition of Pt/NiO/Ni on carbon nanotubes', Nanoscale, 12, pp. 14615 - 14625, http://dx.doi.org/10.1039/d0nr03378b

Wang T; Sang X; Zheng W; Yang B; Yao S; Lei C; Li Z; He Q; Lu J; Lei L; Dai L; Hou Y, 2020, 'Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO2 Electroreduction and High-Performance Zn–CO2 Batteries', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.202002430

Chen Z; An X; Dai L; Xu Y, 2020, 'Holey graphene-based nanocomposites for efficient electrochemical energy storage', Nano Energy, 73, http://dx.doi.org/10.1016/j.nanoen.2020.104762

Wang Z; Zhao Z; Baucom J; Wang D; Dai L; Chen JF, 2020, 'Nitrogen-Doped Graphene Foam as a Metal-Free Catalyst for Reduction Reactions under a High Gravity Field', Engineering, 6, pp. 680 - 687, http://dx.doi.org/10.1016/j.eng.2019.12.018

Bian Y; Wang H; Hu J; Liu B; Liu D; Dai L, 2020, 'Nitrogen-rich holey graphene for efficient oxygen reduction reaction', Carbon, 162, pp. 66 - 73, http://dx.doi.org/10.1016/j.carbon.2020.01.110

Cui C; Gao Y; Li J; Yang C; Liu M; Jin H; Xia Z; Dai L; Lei Y; Wang J; Wang S, 2020, 'Origins of Boosted Charge Storage on Heteroatom-Doped Carbons', Angewandte Chemie - International Edition, 59, pp. 7928 - 7933, http://dx.doi.org/10.1002/anie.202000319

Cui C; Gao Y; Li J; Yang C; Liu M; Jin H; Xia Z; Dai L; Lei Y; Wang J; Wang S, 2020, 'Origins of Boosted Charge Storage on Heteroatom‐Doped Carbons', Angewandte Chemie, 132, pp. 8002 - 8007, http://dx.doi.org/10.1002/ange.202000319

Song L; Hu C; Xiao Y; He J; Lin Y; Connell JW; Dai L, 2020, 'An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts', Nano Energy, 71, http://dx.doi.org/10.1016/j.nanoen.2020.104595

Zhu X; Zhang D; Chen CJ; Zhang Q; Liu RS; Xia Z; Dai L; Amal R; Lu X, 2020, 'Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis', Nano Energy, 71, http://dx.doi.org/10.1016/j.nanoen.2020.104597

Hu C; Gong L; Xiao Y; Yuan Y; Bedford NM; Xia Z; Ma L; Wu T; Lin Y; Connell JW; Shahbazian-Yassar R; Lu J; Amine K; Dai L, 2020, 'High-Performance, Long-Life, Rechargeable Li–CO2 Batteries based on a 3D Holey Graphene Cathode Implanted with Single Iron Atoms', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.201907436

Cheng Q; Hu C; Wang G; Zou Z; Yang H; Dai L, 2020, 'Carbon-Defect-Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution', Journal of the American Chemical Society, 142, pp. 5594 - 5601, http://dx.doi.org/10.1021/jacs.9b11524

Xiao Y; Du F; Hu C; Ding Y; Wang ZL; Roy A; Dai L, 2020, 'High-Performance Li-CO2 Batteries from Free-Standing, Binder-Free, Bifunctional Three-Dimensional Carbon Catalysts', ACS Energy Letters, 5, pp. 916 - 921, http://dx.doi.org/10.1021/acsenergylett.0c00181

Zhang W; Hu C; Guo Z; Dai L, 2020, 'High-Performance K–CO2 Batteries Based on Metal-Free Carbon Electrocatalysts', Angewandte Chemie - International Edition, 59, pp. 3470 - 3474, http://dx.doi.org/10.1002/anie.201913687

Zhang W; Hu C; Guo Z; Dai L, 2020, 'High‐Performance K–CO2 Batteries Based on Metal‐Free Carbon Electrocatalysts', Angewandte Chemie, 132, pp. 3498 - 3502, http://dx.doi.org/10.1002/ange.201913687

Huang H; Zhou S; Yu C; Huang H; Zhao J; Dai L; Qiu J, 2020, 'Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting', Energy and Environmental Science, 13, pp. 545 - 553, http://dx.doi.org/10.1039/c9ee03273h

Zhou Y; Wang CH; Lu W; Dai L, 2020, 'Recent Advances in Fiber-Shaped Supercapacitors and Lithium-Ion Batteries', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.201902779

Zhou Y; Wang C; Lu W; Dai L, 2020, 'Fiber‐Shaped Energy‐Storage Devices: Recent Advances in Fiber‐Shaped Supercapacitors and Lithium‐Ion Batteries (Adv. Mater. 5/2020)', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.202070037

Xia Z; Li CM; Dai L, 2019, 'Controlled Surface Elemental Distribution Enhances Catalytic Activity and Stability', Matter, 1, pp. 1447 - 1449, http://dx.doi.org/10.1016/j.matt.2019.11.009

Yang M; Zhang Y; Jian J; Fang L; Li J; Fang Z; Yuan Z; Dai L; Chen X; Yu D, 2019, 'Donor–Acceptor Nanocarbon Ensembles to Boost Metal-Free All-pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation', Angewandte Chemie - International Edition, 58, pp. 16217 - 16222, http://dx.doi.org/10.1002/anie.201907826

Yang M; Zhang Y; Jian J; Fang L; Li J; Fang Z; Yuan Z; Dai L; Chen X; Yu D, 2019, 'Donor–Acceptor Nanocarbon Ensembles to Boost Metal‐Free All‐pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation', Angewandte Chemie, 131, pp. 16363 - 16368, http://dx.doi.org/10.1002/ange.201907826

Yang M; Zhang Y; Jian J; Fang L; Li J; Fang Z; Yuan Z; Dai L; Chen X; Yu D, 2019, 'Innentitelbild: Donor–Acceptor Nanocarbon Ensembles to Boost Metal‐Free All‐pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation (Angew. Chem. 45/2019)', Angewandte Chemie, 131, pp. 16086 - 16086, http://dx.doi.org/10.1002/ange.201912599

Yang M; Zhang Y; Jian J; Fang L; Li J; Fang Z; Yuan Z; Dai L; Chen X; Yu D, 2019, 'Inside Cover: Donor–Acceptor Nanocarbon Ensembles to Boost Metal‐Free All‐pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation (Angew. Chem. Int. Ed. 45/2019)', Angewandte Chemie International Edition, 58, pp. 15940 - 15940, http://dx.doi.org/10.1002/anie.201912599

Yang S; Yu Y; Dou M; Zhang Z; Dai L; Wang F, 2019, 'Two-Dimensional Conjugated Aromatic Networks as High-Site-Density and Single-Atom Electrocatalysts for the Oxygen Reduction Reaction', Angewandte Chemie - International Edition, 58, pp. 14724 - 14730, http://dx.doi.org/10.1002/anie.201908023

Yang S; Yu Y; Dou M; Zhang Z; Dai L; Wang F, 2019, 'Two‐Dimensional Conjugated Aromatic Networks as High‐Site‐Density and Single‐Atom Electrocatalysts for the Oxygen Reduction Reaction', Angewandte Chemie, 131, pp. 14866 - 14872, http://dx.doi.org/10.1002/ange.201908023

Zhao C; Li X; An S; Zheng D; Pei S; Zheng X; Liu Y; Yao Q; Yang M; Dai L, 2019, 'Highly sensitive and selective electrochemical immunosensors by substrate-enhanced electroless deposition of metal nanoparticles onto three-dimensional graphene@Ni foams', Science Bulletin, 64, pp. 1272 - 1279, http://dx.doi.org/10.1016/j.scib.2019.07.015

Ren J; Zhang W; Wang Y; Wang Y; Zhou J; Dai L; Xu M, 2019, 'A graphene rheostat for highly durable and stretchable strain sensor', InfoMat, 1, pp. 396 - 406, http://dx.doi.org/10.1002/inf2.12030

Zhu Y; Gong L; Zhang D; Wang X; Zhang J; Zhang L; Dai L; Xia Z, 2019, 'Catalytic origin and universal descriptors of heteroatom-doped photocatalysts for solar fuel production', Nano Energy, 63, http://dx.doi.org/10.1016/j.nanoen.2019.06.015

Hu C; Liu H; Liu Y; Chen JF; Li Y; Dai L, 2019, 'Graphdiyne with tunable activity towards hydrogen evolution reaction', Nano Energy, 63, http://dx.doi.org/10.1016/j.nanoen.2019.103874


Back to profile page