Select Publications
Journal articles
2024, 'Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications', Advanced Materials, 36, pp. e2404659, http://dx.doi.org/10.1002/adma.202404659
,2024, 'Metal-Free Carbon Co-Catalysts for Up-Conversion Photo-Induced Catalytic Cancer Therapy', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202408560
,2024, 'Recent Advances on Carbon-Based Metal-Free Electrocatalysts for Energy and Chemical Conversions', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202405664
,2024, 'The Australian Research Council Centre of Excellence for Carbon Science and Innovation at University of New South Wales, Sydney', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202413894
,2024, 'Anionic Ionomer: Released Surface-Immobilized Cations and an Established Hydrophobic Microenvironment for Efficient and Durable CO
2024, 'Rationally Designed Carbon-Based Catalysts for Electrochemical C-N Coupling', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202401341
,2024, 'Metal-free catalysts for hydrogenation', Nature Chemistry, 16, pp. 845 - 846, http://dx.doi.org/10.1038/s41557-024-01538-5
,2024, 'Zero-dimensional nano-carbons: Synthesis, properties, and applications', Applied Physics Reviews, 11, http://dx.doi.org/10.1063/5.0187310
,2024, 'Bulk van der Waals materials by low-temperature moulding', Nature Materials, 23, pp. 581 - 582, http://dx.doi.org/10.1038/s41563-024-01872-6
,2024, 'Identifying lithium difluoro(oxalate)borate as a multifunctional electrolyte additive to enable high-voltage Li
2024, 'Functionalization of carbon nanotubes for multifunctional applications', Trends in Chemistry, 6, pp. 186 - 210, http://dx.doi.org/10.1016/j.trechm.2024.02.002
,2024, 'The component-activity interrelationship of cobalt-based bifunctional electrocatalysts for overall water splitting: strategies and performance', Journal of Energy Chemistry, 91, pp. 453 - 474, http://dx.doi.org/10.1016/j.jechem.2023.12.033
,2024, 'Asymmetric Atomic Tin Catalysts with Tailored p-Orbital Electron Structure for Ultra-Efficient Oxygen Reduction', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202303740
,2024, 'Dynamic configurations of metallic atoms in the liquid state for selective propylene synthesis', Nature Nanotechnology, 19, pp. 306 - 310, http://dx.doi.org/10.1038/s41565-023-01540-x
,2024, 'Materials Research at the University of New South Wales Over the Last 75 Years', Advanced Materials, http://dx.doi.org/10.1002/adma.202415007
,2023, 'Highly accessible dual-metal atomic pairs for enhancing oxygen redox reaction in zinc−air batteries', Nano Energy, 118, http://dx.doi.org/10.1016/j.nanoen.2023.108952
,2023, 'Ultra-thin carbon layer encapsulated NiCoP coralline-like catalysts for efficient overall water electrolysis', Journal of Materials Chemistry A, 12, pp. 5100 - 5114, http://dx.doi.org/10.1039/d3ta05366k
,2023, 'Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-41397-1
,2023, 'Surface passivation for highly active, selective, stable, and scalable CO
2023, 'The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO
2023, 'Harnessing the power of water: A review of hydroelectric nanogenerators', Nano Energy, 116, http://dx.doi.org/10.1016/j.nanoen.2023.108819
,2023, 'Multifunctionalizing electrolytes in situ for lithium metal batteries', Nano Energy, 116, http://dx.doi.org/10.1016/j.nanoen.2023.108825
,2023, 'Tailoring the electronic structure of Ni
2023, 'Relieving Stress Concentration through Anion-Cation Codoping toward Highly Stable Nickel-Rich Cathode', ACS Nano, 17, pp. 20621 - 20633, http://dx.doi.org/10.1021/acsnano.3c07655
,2023, 'Carbon Electrode Materials for Advanced Potassium‐Ion Storage', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202308891
,2023, 'Boosted water electrolysis capability of Ni
2023, 'Bionic Mineralization toward Scalable MOF Films for Ampere-Level Biomass Upgrading', Journal of the American Chemical Society, 145, pp. 20624 - 20633, http://dx.doi.org/10.1021/jacs.3c07790
,2023, 'Single-atom Iron Catalyst with Biomimetic Active Center to Accelerate Proton Spillover for Medical-level Electrosynthesis of H
2023, 'Single‐atom Iron Catalyst with Biomimetic Active Center to Accelerate Proton Spillover for Medical‐level Electrosynthesis of H2O2Disinfectant', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202306491
,2023, 'Two-Dimensional Carbon Graphdiyne: Advances in Fundamental and Application Research', ACS Nano, 17, pp. 14309 - 14346, http://dx.doi.org/10.1021/acsnano.3c03849
,2023, 'Structural supercapacitor electrodes for energy storage by electroless deposition of MnO
2023, 'Leveraging Metal Nodes in Metal-Organic Frameworks for Advanced Anodic Hydrazine Oxidation Assisted Seawater Splitting', ACS Nano, 17, pp. 10906 - 10917, http://dx.doi.org/10.1021/acsnano.3c02749
,2023, 'Origin and predictive principle for selective products of electrocatalytic carbon dioxide reduction', Journal of Materials Chemistry A, 11, pp. 15359 - 15369, http://dx.doi.org/10.1039/d3ta00336a
,2023, 'Fe/Co dual metal catalysts modulated by S-ligands for efficient acidic oxygen reduction in PEMFC', Science Advances, 9, http://dx.doi.org/10.1126/sciadv.adg0366
,2023, 'Recent progress in carbon-based electrochemical catalysts: From structure design to potential applications', Nano Research Energy, 2, http://dx.doi.org/10.26599/NRE.2023.9120047
,2023, 'Unifying the origin of catalytic activities for carbon-based metal-free electrocatalysts', Catalysis Today, 418, http://dx.doi.org/10.1016/j.cattod.2023.114129
,2023, 'Photoelectrochemical N
2023, 'Hydrophobic, Ultrastable Cuδ+for Robust CO
2023, 'Self-operating seawater-driven electricity nanogenerator for continuous energy generation and storage', Chemical Engineering Journal Advances, 14, http://dx.doi.org/10.1016/j.ceja.2023.100498
,2023, 'Surfactant effect on DLP fabrication of silica fibre preforms', Ceramics International, 49, pp. 15689 - 15699, http://dx.doi.org/10.1016/j.ceramint.2023.01.161
,2023, 'Porous carbon materials for CO
2023, 'Recent advances in flexible batteries: From materials to applications', Nano Research, 16, pp. 4821 - 4854, http://dx.doi.org/10.1007/s12274-021-3820-2
,2023, 'Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction', Angewandte Chemie - International Edition, 62, http://dx.doi.org/10.1002/anie.202218269
,2023, 'Carbon‐Based Electrocatalysts for Acidic Oxygen Reduction Reaction', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202218269
,2023, 'Accelerated Transfer and Spillover of Carbon Monoxide through Tandem Catalysis for Kinetics-boosted Ethylene Electrosynthesis', Angewandte Chemie - International Edition, 62, http://dx.doi.org/10.1002/anie.202215406
,2023, 'Electrochemical C-N coupling of CO
2023, 'A universal approach to dual-metal-Atom catalytic sites confined in carbon dots for various target reactions', Proceedings of the National Academy of Sciences of the United States of America, 120, http://dx.doi.org/10.1073/pnas.2308828120
,2023, 'Plasma-electrified up-carbonization for low-carbon clean energy', Carbon Energy, 5, http://dx.doi.org/10.1002/cey2.260
,2023, 'Accelerated Transfer and Spillover of Carbon Monoxide through Tandem Catalysis for Kinetics‐boosted Ethylene Electrosynthesis', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202215406
,2023, 'Next‐Generation Energy Harvesting and Storage Technologies for Robots Across All Scales', Advanced Intelligent Systems, 5, http://dx.doi.org/10.1002/aisy.202200045
,