Select Publications
Journal articles
2024, 'Predicting COVID-19 booster immunogenicity against future SARS-CoV-2 variants and the benefits of vaccine updates', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52194-9
,2024, 'Predicting vaccine effectiveness for mpox', Nature Communications, 15, pp. 3856, http://dx.doi.org/10.1038/s41467-024-48180-w
,2024, 'Erratum: Plasmodium infection induces phenotypic, clonal, and spatial diversity among differentiating CD4+ T cells (Cell Reports (2024) 43(6), (S2211124724006454), (10.1016/j.celrep.2024.114317))', Cell Reports, 43, http://dx.doi.org/10.1016/j.celrep.2024.114754
,2024, 'Plasmodium infection induces phenotypic, clonal, and spatial diversity among differentiating CD4+ T cells', Cell Reports, 43, http://dx.doi.org/10.1016/j.celrep.2024.114317
,2024, 'Viral clearance as a surrogate of clinical efficacy for COVID-19 therapies in outpatients: a systematic review and meta-analysis', The Lancet Microbe, 5, pp. e459 - e467, http://dx.doi.org/10.1016/S2666-5247(23)00398-1
,2023, 'Author Correction: Propensity of selecting mutant parasites for the antimalarial drug cabamiquine (Nature Communications, (2023), 14, 1, (5205), 10.1038/s41467-023-40974-8)', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-41287-6
,2023, 'Estimating long-term vaccine effectiveness against SARS-CoV-2 variants: a model-based approach', Nature Communications, 14, pp. 4325, http://dx.doi.org/10.1038/s41467-023-39736-3
,2023, 'Evidence for exposure dependent carriage of malaria parasites across the dry season: modelling analysis of longitudinal data', Malaria Journal, 22, http://dx.doi.org/10.1186/s12936-023-04461-1
,2023, 'Monoclonal antibody levels and protection from COVID-19', Nature Communications, 14, pp. 4545, http://dx.doi.org/10.1038/s41467-023-40204-1
,2023, 'Predicting vaccine effectiveness against severe COVID-19 over time and against variants: a meta-analysis', Nature Communications, 14, pp. 1633, http://dx.doi.org/10.1038/s41467-023-37176-7
,2023, 'Propensity of selecting mutant parasites for the antimalarial drug cabamiquine', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-40974-8
,2023, 'Determinants of passive antibody efficacy in SARS-CoV-2 infection: a systematic review and meta-analysis', The Lancet Microbe, 4, pp. e883 - e892, http://dx.doi.org/10.1016/S2666-5247(23)00194-5
,2023, 'Long-term vaccination strategies to mitigate the impact of SARS-CoV-2 transmission: A modelling study', PLoS Medicine, 20, pp. e1004195, http://dx.doi.org/10.1371/journal.pmed.1004195
,2023, 'Systemic host inflammation induces stage-specific transcriptomic modification and slower maturation in malaria parasites', mBio, 14, pp. e0112923, http://dx.doi.org/10.1128/mbio.01129-23
,2023, 'Durable reprogramming of neutralizing antibody responses following Omicron breakthrough infection', Science Advances, 9, http://dx.doi.org/10.1126/sciadv.adg5301
,2023, 'Robust and prototypical immune responses toward COVID-19 vaccine in First Nations peoples are impacted by comorbidities', Nature Immunology, 24, pp. 966 - 978, http://dx.doi.org/10.1038/s41590-023-01508-y
,2023, 'SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses', Immunity, 56, pp. 879 - 892.e4, http://dx.doi.org/10.1016/j.immuni.2023.02.017
,2023, 'Predicting the efficacy of variant-modified COVID-19 vaccine boosters', Nature Medicine, 29, pp. 574 - 578, http://dx.doi.org/10.1038/s41591-023-02228-4
,2023, 'Correlates of Protection, Thresholds of Protection, and Immunobridging among Persons with SARS-CoV-2 Infection', Emerging Infectious Diseases, 29, pp. 381 - 388, http://dx.doi.org/10.3201/eid2902.221422
,2023, 'The delayed bloodstream clearance of Plasmodium falciparum parasites after M5717 treatment is attributable to the inability to modify their red blood cell hosts', Frontiers in Cellular and Infection Microbiology, 13, http://dx.doi.org/10.3389/fcimb.2023.1211613
,2022, 'Population heterogeneity in Plasmodium vivax relapse risk', PLoS Neglected Tropical Diseases, 16, http://dx.doi.org/10.1371/journal.pntd.0010990
,2022, 'Similarly efficacious anti-malarial drugs SJ733 and pyronaridine differ in their ability to remove circulating parasites in mice', Malaria Journal, 21, http://dx.doi.org/10.1186/s12936-022-04075-z
,2022, 'The magnitude and timing of recalled immunity after breakthrough infection is shaped by SARS-CoV-2 variants', Immunity, 55, pp. 1316 - 1326.e4, http://dx.doi.org/10.1016/j.immuni.2022.05.018
,2022, 'Parasite Viability as a Measure of in Vivo Drug Activity in Preclinical and Early Clinical Antimalarial Drug Assessment', Antimicrobial Agents and Chemotherapy, 66, http://dx.doi.org/10.1128/aac.00114-22
,2022, 'Relating in Vitro Neutralization Level and Protection in the CVnCoV (CUREVAC) Trial', Clinical Infectious Diseases, 75, pp. E878 - E879, http://dx.doi.org/10.1093/cid/ciac075
,2022, 'Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast?', Nature Reviews Immunology, 22, pp. 387 - 397, http://dx.doi.org/10.1038/s41577-022-00716-1
,2022, 'Effect of novel antimalarial ZY-19489 on Plasmodium falciparum viability in a volunteer infection study', The Lancet Infectious Diseases, 22, pp. 760 - 761, http://dx.doi.org/10.1016/S1473-3099(22)00294-8
,2022, 'Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterization of Omicron in Australia', Nature Microbiology, 7, pp. 896 - 908, http://dx.doi.org/10.1038/s41564-022-01135-7
,2022, 'Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine', Cell, 185, pp. 1875 - 1887.e8, http://dx.doi.org/10.1016/j.cell.2022.04.009
,2022, 'Hypnozoite dynamics for Plasmodium vivax malaria: The epidemiological effects of radical cure', Journal of Theoretical Biology, 537, http://dx.doi.org/10.1016/j.jtbi.2022.111014
,2022, 'Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization', Nature, 602, pp. 654 - 656, http://dx.doi.org/10.1038/s41586-021-04387-1
,2022, 'Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis', The Lancet Microbe, 3, pp. e52 - e61, http://dx.doi.org/10.1016/S2666-5247(21)00267-6
,2021, 'mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern', Science, 374, http://dx.doi.org/10.1126/science.abm0829
,2021, 'Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-021-21444-5
,2021, 'Reply to White and Watson.', J Infect Dis, 224, pp. 739 - 740, http://dx.doi.org/10.1093/infdis/jiaa791
,2021, 'Reply to White and Watson', Journal of Infectious Diseases, 224, pp. 739 - 740, http://dx.doi.org/10.1093/infdis/jiaa791
,2021, 'Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection', Nature Medicine, 27, pp. 1205 - 1211, http://dx.doi.org/10.1038/s41591-021-01377-8
,2021, 'Parasite Viability as a Superior Measure of Antimalarial Drug Activity in Humans', Journal of Infectious Diseases, 223, pp. 2154 - 2163, http://dx.doi.org/10.1093/infdis/jiaa678
,2021, 'Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection', Nature Reviews Immunology, 21, pp. 395 - 404, http://dx.doi.org/10.1038/s41577-021-00550-x
,2021, 'Relating in vitro neutralisation level and protection in the CVnCoV (CUREVAC) trial', , http://dx.doi.org/10.1101/2021.06.29.21259504
,2021, 'SARS-CoV-2 variants: levels of neutralisation required for protective immunity', , http://dx.doi.org/10.1101/2021.08.11.21261876
,2021, 'What level of neutralising antibody protects from COVID-19?', , http://dx.doi.org/10.1101/2021.03.09.21252641
,2020, 'Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models', Nature Reviews Immunology, 20, pp. 727 - 738, http://dx.doi.org/10.1038/s41577-020-00471-1
,2020, 'Transcriptome dynamics of CD4+ T cells during malaria maps gradual transit from effector to memory', Nature Immunology, 21, pp. 1597 - 1610, http://dx.doi.org/10.1038/s41590-020-0800-8
,2020, 'Artemisinin Resistance and the Unique Selection Pressure of a Short-acting Antimalarial', Trends in Parasitology, 36, pp. 884 - 887, http://dx.doi.org/10.1016/j.pt.2020.07.004
,2020, 'Quantifying and preventing plasmodium vivax recurrences in primaquine-untreated pregnant women: An observational and modeling study in Brazil', PLoS Neglected Tropical Diseases, 14, pp. 1 - 16, http://dx.doi.org/10.1371/journal.pntd.0008526
,2020, 'A Plasmodium vivax experimental human infection model for evaluating efficacy of interventions', Journal of Clinical Investigation, 130, pp. 2920 - 2927, http://dx.doi.org/10.1172/JCI134923
,2020, 'Malaria Parasite Clearance: What Are We Really Measuring?', Trends in Parasitology, 36, pp. 413 - 426, http://dx.doi.org/10.1016/j.pt.2020.02.005
,2019, 'Corrigendum: Defining the effectiveness of antimalarial chemotherapy: Investigation of the lag in parasite clearance following drug administration (Journal of Infectious Diseases (2016) 214 (753-761) DOI: 10.1093/infdis/jiw234)', Journal of Infectious Diseases, 219, pp. 1852 - 1853, http://dx.doi.org/10.1093/infdis/jiy729
,2019, 'Plasmodium-specific antibodies block in vivo parasite growth without clearing infected red blood cells', PLoS Pathogens, 15, pp. e1007599, http://dx.doi.org/10.1371/journal.ppat.1007599
,