Select Publications
Journal articles
2024, 'A singlet-triplet hole-spin qubit in MOS silicon', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-51902-9
,2024, 'Bounds to electron spin qubit variability for scalable CMOS architectures', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-48557-x
,2024, 'Entangling gates on degenerate spin qubits dressed by a global field', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52010-4
,2024, 'Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays', Physical Review B, 110, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2024, 'High-fidelity spin qubit operation and algorithmic initialization above 1 K', Nature, 627, pp. 772 - 777, http://dx.doi.org/10.1038/s41586-024-07160-2
,2024, 'Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis', Applied Physics Letters, 124, http://dx.doi.org/10.1063/5.0179958
,2024, 'Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots', Nature Physics, http://dx.doi.org/10.1038/s41567-024-02614-w
,2024, 'Improved Single-Shot Qubit Readout Using Twin rf-SET Charge Correlations', PRX Quantum, 5, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202208557
,2023, 'Combining n-MOS Charge Sensing with p-MOS Silicon Hole Double Quantum Dots in a CMOS platform', Nano Letters, 23, pp. 1261 - 1266, http://dx.doi.org/10.1021/acs.nanolett.2c04417
,2023, 'On-demand electrical control of spin qubits', Nature Nanotechnology, 18, pp. 131 - 136, http://dx.doi.org/10.1038/s41565-022-01280-4
,2022, 'Coherent control of electron spin qubits in silicon using a global field', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00645-w
,2022, 'Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202105488
,2021, 'Single-electron spin resonance in a nanoelectronic device using a global field', Science Advances, 7, http://dx.doi.org/10.1126/sciadv.abg9158
,2021, 'A High-Sensitivity Charge Sensor for Silicon Qubits above 1 K', Nano Letters, 21, pp. 6328 - 6335, http://dx.doi.org/10.1021/acs.nanolett.1c01003
,2020, 'Single-electron operation of a silicon-CMOS 2 × 2 quantum dot array with integrated charge sensing', Nano Letters, 20, pp. 7882 - 7888, http://dx.doi.org/10.1021/acs.nanolett.0c02397
,2016, 'Erratum: Printed circuit board metal powder filters for low electron temperatures (Review of Scientific Instruments (2013) 84 (044706))', Review of Scientific Instruments, 87, http://dx.doi.org/10.1063/1.4959151
,2014, 'Charge state hysteresis in semiconductor quantum dots', Applied Physics Letters, 105, http://dx.doi.org/10.1063/1.4901218
,2014, 'Charge offset stability in Si single electron devices with Al gates', Nanotechnology, 25, http://dx.doi.org/10.1088/0957-4484/25/40/405201
,2012, 'A single-atom electron spin qubit in silicon', Nature, 489, pp. 541 - 544, http://dx.doi.org/10.1038/nature11449
,2011, 'Dynamically controlled charge sensing of a few-electron silicon quantum dot', AIP Advances, 1, http://dx.doi.org/10.1063/1.3654496
,2011, 'Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot', Scientific Reports, 1, http://dx.doi.org/10.1038/srep00110
,2011, 'Single-electron shuttle based on a silicon quantum dot', Applied Physics Letters, 98, pp. Article number: 212103, http://dx.doi.org/10.1063/1.3593491
,2011, 'Spin filling of valley-orbit states in a silicon quantum dot', Nanotechnology, 22, pp. Article number: 335704, http://dx.doi.org/10.1088/0957-4484/22/33/335704
,2009, 'Cylindrical silicon-on-insulator microdosimeter: Design, fabrication and TCAD modeling', IEEE Transactions on Nuclear Science, 56, pp. 424 - 428
,2009, 'Development and Fabrication of Cylindrical Silicon-on-Insulator Microdosimeter Arrays', IEEE Transactions on Nuclear Science, 56, pp. 1637
,2009, 'Electrostatically defined few-electron double quantum dot in silicon', Applied Physics Letters, 94, pp. 173502-1 - 173502-3, http://dx.doi.org/10.1063/1.3124242
,2009, 'Observation of the single-electron regime in a highly tunable silicon quantum dot', Applied Physics Letters, 95, pp. 242102-1 - 242102-3, http://dx.doi.org/10.1063/1.3272858
,2008, 'A Cylindrical Silicon-on-Insulator Microdosimeter: Charge Collection Characteristics', IEEE Transactions on Nuclear Science, 55, pp. 3414 - 3420
,Conference Papers
2024, 'Demonstration of 99.9% single qubit control fidelity of a silicon quantum dot spin qubit made in a 300 mm foundry process', in 2024 IEEE Silicon Nanoelectronics Workshop, SNW 2024, pp. 11 - 12, http://dx.doi.org/10.1109/SNW63608.2024.10639218
,2011, 'Independent control of dot occupancy and reservoir electron density in a one-electron quantum dot', in AIP Conference Proceedings, pp. 349 - 350, http://dx.doi.org/10.1063/1.3666397
,2008, 'Development ad Fabrication of Cylindrical Silicon-on-Insulator Microdosimeter Arrays', in 2008 IEEE Nuclear Science Symposium Conference Record, Dresden Germany, pp. 1044 - 1049, presented at 2008 IEEE Nuclear Science Symposium, Dresden Germany, 19 October 2008 - 25 October 2008
,2008, 'The Next Step in Cylindrical Silicon - on - Indulator Microdosimetry : Charge Collection Results.', in 2008 IEEE Nuclear Science Symposium Conference Record, Dresden Germany, pp. 1088 - 1092, presented at 2008 IEEE Nuclear Science Symposium, Dresden Germany, 19 October 2008 - 25 October 2008
,2008, 'Development and Fabrication of Cylindrical Silicon-on-Insulator Microdosimeter Arrays', in 2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, IEEE, GERMANY, Dresden, pp. 319 - +, presented at IEEE Nuclear Science Symposium/Medical Imaging Conference, GERMANY, Dresden, 19 October 2008 - 25 October 2008, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000268656000068&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2008, 'The Next Step in Cylindrical Silicon-on-Insulator Microdosimetry: Charge Collection Results', in 2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, IEEE, GERMANY, Dresden, pp. 363 - +, presented at IEEE Nuclear Science Symposium/Medical Imaging Conference, GERMANY, Dresden, 19 October 2008 - 25 October 2008, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000268656000078&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2007, 'Silicon-on-insulator microdosimeter for radiobiology', in Hariz A; Varadan VK; Reinhold O (eds.), Proceedings of SPIE Volume 7503, SPIE, Washington, USA, presented at SPIE 2007: Microelectronics, MEMS and Nanotecchnology, Canberra, 05 December 2007
,2007, 'Cylindrical silicon-on-insulator microdosimeter: Charge collection characteristics', in IEEE Nuclear Science Symposium Conference Record, pp. 2307 - 2310, http://dx.doi.org/10.1109/NSSMIC.2007.4436607
,2007, 'Cylindrical silicon-on-insulator microdosimeter: Design, fabrication and TCAD modeling', in IEEE Nuclear Science Symposium Conference Record, pp. 1633 - 1636, http://dx.doi.org/10.1109/NSSMIC.2007.4437312
,Working Papers
2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org10.21203/rs.3.rs-3057916/v1, http://dx.doi.org/10.21203/rs.3.rs-3057916/v1
,Creative Works (non-textual)
2023, Jellybean Quantum Dots in Silicon for Qubit Coupling and On‐Chip Quantum Chemistry (Adv. Mater. 19/2023), at: http://dx.doi.org/10.1002/adma.202370133
,Preprints
2024, Violating Bell's inequality in gate-defined quantum dots, http://arxiv.org/abs/2407.15778v2
,2024, Spin Qubits with Scalable milli-kelvin CMOS Control, http://dx.doi.org/10.48550/arxiv.2407.15151
,2024, A singlet-triplet hole-spin qubit in MOS silicon, http://dx.doi.org/10.21203/rs.3.rs-3603337/v1
,2023, Entangling gates on degenerate spin qubits dressed by a global field, http://dx.doi.org/10.1038/s41467-024-52010-4
,2023, A singlet-triplet hole-spin qubit in MOS silicon, http://dx.doi.org/10.1038/s41467-024-51902-9
,2023, Real-time feedback protocols for optimizing fault-tolerant two-qubit gate fidelities in a silicon spin system, http://dx.doi.org/10.1063/5.0179958
,2023, Spatio-temporal correlations of noise in MOS spin qubits, http://arxiv.org/abs/2309.12542v2
,2023, Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2023, Methods for transverse and longitudinal spin-photon coupling in silicon quantum dots with intrinsic spin-orbit effect, http://arxiv.org/abs/2308.12626v1
,2023, Characterizing non-Markovian Quantum Process by Fast Bayesian Tomography, http://arxiv.org/abs/2307.12452v2
,