Select Publications

Preprints

Deng F; Sang R; Li Y; Yang D; Deng W; Goldys E, 2024, Towards Understanding Trans-Cleavage of Natural and Synthetic Nucleic Acids by Cas12a for Sensitive CRISPR Biosensing, http://dx.doi.org/10.26434/chemrxiv-2024-rw2rr

Chia S; Guo T; Goldys E; Payne S; Lovell N; Shivdasani M; Deng F, 2024, A CRISPR mediated point-of-care assay for the detection of mucosal calprotectin in an animal model of ulcerative colitis, http://dx.doi.org/10.1101/2024.03.23.24304787

Deng F; Sang R; Li Y; Yang B; Zhai X; Xue R; Zhang C; Deng W; Goldys E, 2024, Hairpin-locker mediated CRISPR/Cas tandem system for ultrasensitive detection of DNA without pre-amplification, http://dx.doi.org/10.1101/2024.03.05.583466

Xie Y; Habibalahi A; Anwer A; Wahi K; Gatt C; Johansson E; Holst J; Goldys E; Zanini F, 2024, Integration of hyperspectral imaging and transcriptomics from individual cells with HyperSeq, http://dx.doi.org/10.1101/2024.01.27.577536

Deng F; Gulati S; Sang R; Li Y; Goldys E, 2024, Modulating Cas13atrans-cleavage by double strand RNA: Application to the development of an autocatalytic sensor, http://dx.doi.org/10.1101/2024.03.05.583472

Li Y; Yang B; Deng F; Goldys E, 2023, Topological barrier to Cas12a activation by circular DNA nanostructures facilitates autocatalysis, http://dx.doi.org/10.21203/rs.3.rs-2586294/v1

Knab A; Anwer AG; Pedersen B; Handley S; Marupally AG; Habibalahi A; Goldys EM, 2023, Towards label-free non-invasive autofluorescence multispectral imaging for melanoma diagnosis, http://dx.doi.org/10.1101/2023.09.25.559240

Deng F; Sang R; Li Y; Deng W; Goldys E, 2023, Bifunctional circular DNA amplifier transforms a classic CRISPR/Cas sensor into an ultrasensitive autocatalytic sensor, http://dx.doi.org/10.21203/rs.3.rs-2626952/v1

Richani D; Poljak A; Wang B; Mahbub SB; Biazik J; Campbell JM; Habibalahi A; Stocker WA; Marinova MB; Nixon B; Bustamante S; Skerrett-Byrne D; Harrison CA; Goldys E; Gilchrist RB, 2022, Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors, http://dx.doi.org/10.1101/2022.09.05.506599

Habibalahi A; Campbell JM; Mahbub SB; Anwer AG; Nguyen LT; Gill AJ; Wong MG; Chou A; Pollock CA; Saad S; Goldys EM, 2022, moRphology - dEep Learning Imaging Cells (RELIC) - to Differentiate Between Normal and Pathological Kidney Exfoliated Cells, http://dx.doi.org/10.1101/2022.04.19.488847

Campbell J; Walters S; Habibalahi A; Mahbib S; Anwer A; Grey S; Goldys E, 2022, Autofluorophores Assessed by Hyperspectral Microscopy Indicate Perturbation and Transplant Viability in Pancreatic Islets, http://dx.doi.org/10.21203/rs.3.rs-2058969/v1

Habibalahi A; Campbell J; Tan TCY; Mahbub S; Rose R; Mustafa S; Dunning K; Goldys E, 2022, Automated identification of aneuploid cells within the inner cell mass of an embryo using a numerical extraction of morphological signatures, http://dx.doi.org/10.1101/2022.09.06.506861

Habibalahi A; Moses D; Campbell J; Mahbub S; Barbour AP; Samra JS; Haghighi KS; Gebski VJ; Goldstein D; Goldys E, 2021, Computed Tomography Radiomics Signatures: Sensitive biomarkers for clinical decision support in pancreatic cancer- a pilot study, http://dx.doi.org/10.1101/2021.12.03.21267217

Guller A; Kuschnerus I; Rozova V; Nadort A; Yao Y; Khabir Z; Garcia-Bennett A; Liang LO; Polikarpova A; Qian Y; Goldys EM; Zvyagin A, 2021, Chick Embryo Experimental Platform for 3D Tissue Engineering Modelling of Cancer Micrometastases for Tumor Biology, Drug Development and Nanomaterials Testing, http://dx.doi.org/10.20944/preprints202109.0085.v1

Habibalahi A; Bertoldo M; Mahbub S; Campbell J; Goss D; Ledger W; Gilchrist R; Wu L; Goldys E, 2021, NMN treatment reverses unique deep radiomic signature morphology of oocytes from aged mice, http://dx.doi.org/10.21203/rs.3.rs-951364/v1

Thejer BM; Adhikary PP; Kaur A; Teakel SL; Oosterum AV; Seth I; Pajic M; Hannan KM; Pavy M; Poh P; Jazayeri JA; Zaw T; Pascovici D; Ludescher M; Pawlak M; Cassano JC; Turnbull L; Jazayeri M; James AC; Coorey CP; Roberts TL; Kinder SJ; Hannan RD; Patrick E; Molloy MP; J. E; Fehm TN; Neubauer H; Goldys EM; Weston LA; CAHILL M, 2020, PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth, http://dx.doi.org/10.21203/rs.2.22342/v2

Thejer BM; Adhikary PP; Kaur A; Teakel SL; Oosterum AV; Seth I; Pajic M; Hannan KM; Pavy M; Poh P; Jazayeri JA; Zaw T; Pascovici D; Ludescher M; Pawlak M; Cassano JC; Turnbull L; Jazayeri M; James AC; Coorey CP; Roberts TL; Kinder SJ; Hannan RD; Patrick E; Molloy MP; J. E; Fehm TN; Neubauer H; Goldys EM; Weston LA; CAHILL M, 2020, PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth, http://dx.doi.org/10.21203/rs.2.22342/v1

Thejer BM; Adhikary PP; Teakel SL; Fang J; Weston PA; Gurusinghe S; Anwer AG; Gosnell M; Jazayeri JA; Ludescher M; Gray L-A; Pawlak M; Wallace RH; Pant SD; Wong M; Fischer T; J. E; Fehm TN; Neubauer H; Goldys EM; Quinn JC; Weston LA; CAHILL M, 2020, PGRMC1 effects on metabolism, genomic mutation and CpG methylation imply crucial roles in animal biology and disease, http://dx.doi.org/10.21203/rs.2.20008/v1

Kelf TA; Sreenivasan VKA; Sun J; Kim EJ; Goldys EM; Zvyagin AV, 2010, Non-specific cellular uptake of surface-functionalized quantum dots, http://dx.doi.org/10.48550/arxiv.1006.5497

Li Y; Deng F; Goldys EM, A Simple and Versatile Crispr/Cas12a-Based Immunosensing Platform: Towards Attomolar Level Sensitivity for Small Protein Diagnostics, http://dx.doi.org/10.2139/ssrn.4047902

Deng F; Li Y; Li B; Goldys EM, Increasing Trans-Cleavage Catalytic Efficiency of Cas12a and Cas13a with Chemical Enhancers Enables Amplified Nucleic Acid Detection, http://dx.doi.org/10.2139/ssrn.4091242


Back to profile page