Select Publications
Journal articles
2020, 'Topology and control of self-assembled domain patterns in low-dimensional ferroelectrics', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-020-19519-w
,2020, 'Controlled Nucleation and Stabilization of Ferroelectric Domain Wall Patterns in Epitaxial (110) Bismuth Ferrite Heterostructures', Advanced Functional Materials, 30, http://dx.doi.org/10.1002/adfm.202003571
,2020, 'The Experimentalist's Guide to the Cycloid, or Noncollinear Antiferromagnetism in Epitaxial BiFeO3', Advanced Materials, 32, pp. e2003711 - e2003711, http://dx.doi.org/10.1002/adma.202003711
,2020, 'Fowler-Nordheim tunneling-assisted enhancement of tunneling electroresistance effect through a composite barrier', Applied Physics Letters, 116, http://dx.doi.org/10.1063/5.0001770
,2020, 'Interfacial Strain Gradients Control Nanoscale Domain Morphology in Epitaxial BiFeO
2020, 'Self-Assembled NiO Nanocrystal Arrays as Memristive Elements', Advanced Electronic Materials, 6, http://dx.doi.org/10.1002/aelm.201901153
,2020, 'Bi-Doped Single-Crystalline (001) Epitaxial TiO
2020, 'Electrode dependence of local electrical properties of chemical-solution-deposition-derived BiFeO
2020, 'Large-scale multiferroic complex oxide epitaxy with magnetically switched polarization enabled by solution processing', National Science Review, 7, pp. 84 - 91, http://dx.doi.org/10.1093/nsr/nwz143
,2019, 'A magnetic phase diagram for nanoscale epitaxial BiFeO
2019, 'Expansion of the spin cycloid in multiferroic BiFeO
2019, 'Interfacial origins of visible-light photocatalytic activity in ZnS–GaP multilayers', Acta Materialia, 181, pp. 139 - 147, http://dx.doi.org/10.1016/j.actamat.2019.09.041
,2019, 'Influence of flexoelectricity on the spin cycloid in (110)-oriented BiFe O3 films', Physical Review Materials, 3, pp. 104404, http://dx.doi.org/10.1103/PhysRevMaterials.3.104404
,2019, 'Ferroelastic domain motion by pulsed electric field in (111)/(11 1) rhombohedral epitaxial Pb(Z r0.65 T i0.35) O3 thin films: Fast switching and relaxation FERROELASTIC DOMAIN MOTION by PULSED ... YOSHITAKA EHARA et al.', Physical Review B, 100, pp. 104116, http://dx.doi.org/10.1103/PhysRevB.100.104116
,2019, 'Encapsulation of Metal Oxide Nanoparticles by Oxide Supports during Epitaxial Growth', ACS Applied Electronic Materials, 1, pp. 1482 - 1488, http://dx.doi.org/10.1021/acsaelm.9b00277
,2019, 'Deterministic Ferroelastic Domain Switching Using Ferroelectric Bilayers', Nano Letters, 19, pp. 5319 - 5326, http://dx.doi.org/10.1021/acs.nanolett.9b01782
,2019, 'Correction to: Deterministic Switching of Ferroelectric Bubble Nanodomains (Advanced Functional Materials, (2019), 29, 28, (1808573), 10.1002/adfm.201808573)', Advanced Functional Materials, 29, http://dx.doi.org/10.1002/adfm.201904104
,2019, 'Deterministic Switching of Ferroelectric Bubble Nanodomains', Advanced Functional Materials, 29, http://dx.doi.org/10.1002/adfm.201808573
,2019, 'Temperature-Dependent Magnetic Domain Evolution in Noncollinear Ferrimagnetic FeV
2019, 'Deterministic optical control of room temperature multiferroicity in BiFeO
2019, 'Conformational Domain Wall Switch', Advanced Functional Materials, 29, http://dx.doi.org/10.1002/adfm.201807523
,2019, 'Nondestructive Mapping of Long-Range Dislocation Strain Fields in an Epitaxial Complex Metal Oxide', Nano Letters, 19, pp. 1445 - 1450, http://dx.doi.org/10.1021/acs.nanolett.8b03839
,2019, 'Enhanced tunneling electroresistance effect in composite ferroelectric tunnel junctions with asymmetric electrodes', MRS Communications, 9, pp. 258 - 263, http://dx.doi.org/10.1557/mrc.2018.212
,2019, 'GaP-ZnS Multilayer Films: Visible-Light Photoelectrodes by Interface Engineering', Journal of Physical Chemistry C, 123, pp. 3336 - 3342, http://dx.doi.org/10.1021/acs.jpcc.8b10797
,2018, 'Epitaxial ferroelectric oxide thin films for optical applications', Applied Physics Reviews, 5, pp. 041108, http://dx.doi.org/10.1063/1.5046559
,2018, 'Increase of power conversion efficiency in dye-sensitized solar cells through ferroelectric substrate induced charge transport enhancement', Scientific Reports, 8, http://dx.doi.org/10.1038/s41598-018-35764-y
,2018, 'Designer defect stabilization of the super tetragonal phase in >70-nm-thick BiFeO
2018, 'Structural, magnetic, and ferroelectric properties of T-like cobalt-doped BiFeO
2018, 'Revisiting the Optical Band Gap in Epitaxial BiFeO
2018, 'Mixed-phase bismuth ferrite thin films by chemical solution deposition', Journal of Materials Chemistry C, 6, pp. 2882 - 2888, http://dx.doi.org/10.1039/c7tc05841a
,2018, 'Interface Engineering of ZnS/GaP Multilayer Films: Understanding the Origins of High Visible-Light Photoactivity', Microscopy and Microanalysis, 24, pp. 142 - 143, http://dx.doi.org/10.1017/s1431927618001204
,2017, 'Nanoscale Bubble Domains and Topological Transitions in Ultrathin Ferroelectric Films', Advanced Materials, 29, http://dx.doi.org/10.1002/adma.201702375
,2017, 'In-situ observation of ultrafast 90° domain switching under application of an electric field in (100)/(001)-oriented tetragonal epitaxial Pb(Zr
2017, 'Morphology-dependent photo-induced polarization recovery in ferroelectric thin films', Applied Physics Letters, 111, pp. 092902, http://dx.doi.org/10.1063/1.4990839
,2017, 'Nanoscale Probing of Elastic-Electronic Response to Vacancy Motion in NiO Nanocrystals', ACS Nano, 11, pp. 8387 - 8394, http://dx.doi.org/10.1021/acsnano.7b03826
,2017, 'Nonvolatile ferroelectric domain wall memory', Science Advances, 3, http://dx.doi.org/10.1126/sciadv.1700512
,2017, 'Strain Dependent Electronic Structure and Band Offset Tuning at Heterointerfaces of ASnO
2017, 'Mechanical stress-induced switching kinetics of ferroelectric thin films at the nanoscale', Nanotechnology, 28, http://dx.doi.org/10.1088/1361-6528/aa536d
,2017, 'Localised nanoscale resistive switching in GaP thin films with low power consumption', Journal of Materials Chemistry C, 5, pp. 2153 - 2159, http://dx.doi.org/10.1039/c6tc04895a
,2017, 'Magnetic and Magnetodielectric Properties of Epitaxial Iron Vanadate Thin Films', Advanced Electronic Materials, 3, http://dx.doi.org/10.1002/aelm.201600295
,2016, 'Universal Approach for Predicting Crystallography of Heterogeneous Epitaxial Nanocrystals with Multiple Orientation Relationships', ACS Applied Materials and Interfaces, 8, pp. 34844 - 34853, http://dx.doi.org/10.1021/acsami.6b10701
,2016, 'Nanostructuring Ferroelectrics via Focused Ion Beam Methodologies', Advanced Functional Materials, 26, pp. 8367 - 8381, http://dx.doi.org/10.1002/adfm.201603812
,2016, 'Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers', ACS Nano, 10, pp. 10126 - 10134, http://dx.doi.org/10.1021/acsnano.6b05180
,2016, 'Reversible Polarization Rotation in Epitaxial Ferroelectric Bilayers', Advanced Materials Interfaces, 3, http://dx.doi.org/10.1002/admi.201600444
,2016, 'Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films', Nature Communications, 7, pp. 12664, http://dx.doi.org/10.1038/ncomms12664
,2016, 'Defect engineering of ZnS thin films for photoelectrochemical water-splitting under visible light', Solar Energy Materials and Solar Cells, 153, pp. 179 - 185, http://dx.doi.org/10.1016/j.solmat.2016.04.021
,2016, 'Dielectric Materials: Enhancement of Dielectric Properties in Epitaxial Bismuth Ferrite–Bismuth Samarium Ferrite Superlattices (Adv. Electron. Mater. 8/2016)', Advanced Electronic Materials, 2, http://dx.doi.org/10.1002/aelm.201670042
,2016, 'Enhancement of Dielectric Properties in Epitaxial Bismuth Ferrite–Bismuth Samarium Ferrite Superlattices', Advanced Electronic Materials, 2, http://dx.doi.org/10.1002/aelm.201600170
,2016, 'Morphotropic Phase Elasticity of Strained BiFeO
2016, 'ZnS thin films for visible-light active photoelectrodes: Effect of film morphology and crystal structure', Crystal Growth and Design, 16, pp. 2461 - 2465, http://dx.doi.org/10.1021/acs.cgd.5b01590
,