Select Publications
Journal articles
2021, 'Chimeric antigen receptor t cell therapy and the immunosuppressive tumor microenvironment in pediatric sarcoma', Cancers, 13, pp. 4704, http://dx.doi.org/10.3390/cancers13184704
,2021, 'Slinker: Visualising novel splicing events in RNA-Seq data', F1000Research, 10, http://dx.doi.org/10.12688/f1000research.74836.1
,2021, 'Whole-genome sequencing facilitates patient-specific quantitative PCR-based minimal residual disease monitoring in acute lymphoblastic leukaemia, neuroblastoma and Ewing sarcoma', British Journal of Cancer, 126, pp. 482 - 491, http://dx.doi.org/10.1038/s41416-021-01538-z
,2021, 'ALLSorts: a RNA-Seq classifier for B-Cell Acute Lymphoblastic Leukemia', , http://dx.doi.org/10.1101/2021.08.01.454393
,2021, 'JAFFAL: Detecting fusion genes with long read transcriptome sequencing', , http://dx.doi.org/10.1101/2021.04.26.441398
,2020, 'Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis', Cell, 183, pp. 1617 - 1633.e22, http://dx.doi.org/10.1016/j.cell.2020.11.012
,2020, 'Recurrent SPECC1L–NTRK fusions in pediatric sarcoma and brain tumors', Cold Spring Harbor Molecular Case Studies, 6, pp. mcs.a005710, http://dx.doi.org/10.1101/MCS.A005710
,2020, 'Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer', Nature Medicine, 26, pp. 1742 - 1753, http://dx.doi.org/10.1038/s41591-020-1072-4
,2020, 'A novel orthotopic patient-derived xenograft model of radiation-induced glioma following medulloblastoma', Cancers, 12, pp. 1 - 24, http://dx.doi.org/10.3390/cancers12102937
,2020, 'MLL-TFE3: A novel and aggressive KMT2A fusion identified in infant leukemia', Blood Advances, 4, pp. 4918 - 4923, http://dx.doi.org/10.1182/BLOODADVANCES.2020002708
,2020, 'Immune profiling of pediatric solid tumors', Journal of Clinical Investigation, 130, pp. 3391 - 3402, http://dx.doi.org/10.1172/JCI137181
,2020, 'Cotargeting BCL-2 and MCL-1 in high-risk B-ALL', Blood Advances, 4, pp. 2762 - 2767, http://dx.doi.org/10.1182/bloodadvances.2019001416
,2020, 'Evaluating barriers to uptake of comprehensive genomic profiling (CGP) in advanced cancer patients (pts).', Journal of Clinical Oncology, 38, pp. 2033 - 2033, http://dx.doi.org/10.1200/jco.2020.38.15_suppl.2033
,2020, 'The application of RNA sequencing for the diagnosis and genomic classification of pediatric acute lymphoblastic leukemia', Blood Advances, 4, pp. 930 - 942, http://dx.doi.org/10.1182/bloodadvances.2019001008
,2020, 'MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data', , http://dx.doi.org/10.1101/2020.06.03.131532
,2020, 'Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance', , http://dx.doi.org/10.1101/2020.11.18.389312
,2020, 'Signalling in high-risk paediatric cancers – Genomic insights driving therapeutic possibilities', Pathology, 52, pp. S31 - S31, http://dx.doi.org/10.1016/j.pathol.2020.01.128
,2019, 'Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL–USP2 fusions', Leukemia, 33, pp. 2306 - 2340, http://dx.doi.org/10.1038/s41375-019-0451-7
,2019, 'ENHANCING EXPRESSION OF PRO-APOPTOTIC FACTORS THROUGH INHIBITION OF HDACS DRIVES P53-INDEPENDENT SYNERGY WITH VENETOCLAX FOR THE TREATMENT OF AML', EXPERIMENTAL HEMATOLOGY, 76, pp. S54 - S54, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000844545400090&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2019, 'IDENTIFICATION OF POTENT BH3-MIMETIC COMBINATIONS TARGETING PRO-SURVIVAL PATHWAYS IN HUMAN B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA', EXPERIMENTAL HEMATOLOGY, 76, pp. S79 - S80, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000844545400172&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2019, 'Erratum to: Germline HAVCR2 mutations altering TIM-3 characterize subcutaneous panniculitis-like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome (Nature Genetics, (2018), 50, 12, (1650-1657), 10.1038/s41588-018-0251-4)', Nature Genetics, 51, pp. 196, http://dx.doi.org/10.1038/s41588-018-0304-8
,2019, 'Targeted therapy and disease monitoring in CNTRL-FGFR1-driven leukaemia', Pediatric Blood and Cancer, 66, http://dx.doi.org/10.1002/pbc.27897
,2018, 'Integration of genomics, high throughput drug screening, and personalized xenograft models as a novel precision medicine paradigm for high risk pediatric cancer', Cancer Biology and Therapy, 19, pp. 1078 - 1087, http://dx.doi.org/10.1080/15384047.2018.1491498
,2018, 'Germline HAVCR2 mutations altering TIM-3 characterize subcutaneous panniculitis-like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome', Nature Genetics, 50, pp. 1650 - 1657, http://dx.doi.org/10.1038/s41588-018-0251-4
,2018, 'Brief Report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma', British Journal of Cancer, 119, pp. 693 - 696, http://dx.doi.org/10.1038/s41416-018-0251-2
,2018, 'COMBINED BCL-2 AND HDAC TARGETING HAS POTENT AND TP53 INDEPENDENT ACTIVITY IN AML', EXPERIMENTAL HEMATOLOGY, 64, pp. S99 - S100, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000975534800214&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2018, 'Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma', Journal of Clinical Investigation, 128, pp. 3341 - 3355, http://dx.doi.org/10.1172/JCI99032
,2018, 'Clinker: visualizing fusion genes detected in RNA-seq data', GigaScience, 7, pp. giy079, http://dx.doi.org/10.1093/gigascience/giy079
,2018, 'Exploring the feasibility and utility of exome-scale tumour sequencing in a clinical setting', Internal Medicine Journal, 48, pp. 786 - 794, http://dx.doi.org/10.1111/imj.13806
,2018, 'MicroRNA-155 expression and function in AML: An evolving paradigm', Experimental Hematology, 62, pp. 1 - 6, http://dx.doi.org/10.1016/j.exphem.2018.03.007
,2018, 'Role of the β common (βc) family of cytokines in health and disease', Cold Spring Harbor Perspectives in Biology, 10, http://dx.doi.org/10.1101/cshperspect.a028514
,2018, 'Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1', Leukemia, 32, pp. 303 - 312, http://dx.doi.org/10.1038/leu.2017.243
,2017, 'Clinker: visualising fusion genes detected in RNA-seq data', , http://dx.doi.org/10.1101/218586
,2017, 'Cell death provoked by loss of interleukin-3 signaling is independent of Bad, Bim, and PI3 kinase, but depends in part on Puma (vol 108, pg 1461, 2006)', BLOOD, 130, pp. 1684 - 1684, http://dx.doi.org/10.1182/blood-2017-08-802397
,2017, 'Chemotherapy-related cardiotoxicity: are Australian practitioners missing the point?', Internal Medicine Journal, 47, pp. 1166 - 1172, http://dx.doi.org/10.1111/imj.13481
,2017, 'CYTOKINE SIGNALLING IN HAEMATOPOIETIC CELLS', EXPERIMENTAL HEMATOLOGY, 53, pp. S107 - S107, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000972742900241&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2017, 'Dysregulation of BCL-2 family proteins by leukemia fusion genes', Journal of Biological Chemistry, 292, pp. 14325 - 14333, http://dx.doi.org/10.1074/jbc.R117.799056
,2017, 'Quantitative proteomic analysis of EZH2 inhibition in acute myeloid leukemia reveals the targets and pathways that precede the induction of cell death', Proteomics - Clinical Applications, 11, http://dx.doi.org/10.1002/prca.201700013
,2017, 'High CD123 levels enhance proliferation in response to IL-3, but reduce chemotaxis by downregulating CXCR4 expression', Blood Advances, 1, pp. 1067 - 1079, http://dx.doi.org/10.1182/bloodadvances.2016002931
,2017, 'The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia (vol 8, 339ra69, 2016)', SCIENCE TRANSLATIONAL MEDICINE, 9, http://dx.doi.org/10.1126/scitranslmed.aan8181
,2017, 'Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia', Leukemia, 31, pp. 808 - 820, http://dx.doi.org/10.1038/leu.2016.279
,2017, 'Genetic determinants of anthracycline cardiotoxicity – ready for the clinic?', British Journal of Clinical Pharmacology, 83, pp. 1141 - 1142, http://dx.doi.org/10.1111/bcp.13195
,2016, 'Letting the breaks off MYCN', Cell Death and Differentiation, 23, pp. 1904 - 1905, http://dx.doi.org/10.1038/cdd.2016.112
,2016, 'A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders', Genetics in Medicine, 18, pp. 1090 - 1096, http://dx.doi.org/10.1038/gim.2016.1
,2016, 'Cycloheximide can induce bax/bak dependent myeloid cell death independently of multiple BH3-only proteins', PLoS ONE, 11, http://dx.doi.org/10.1371/journal.pone.0164003
,2016, 'Correction: Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics (Cancer Cell (2016) 30(3) (499–500) (S1535610816000350) (10.1016/j.ccell.2016.01.006))', Cancer Cell, 30, pp. 499 - 500, http://dx.doi.org/10.1016/j.ccell.2016.08.009
,2016, 'The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia', Science Translational Medicine, 8, http://dx.doi.org/10.1126/scitranslmed.aad3099
,2016, 'Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics', Cancer Cell, 29, pp. 145 - 158, http://dx.doi.org/10.1016/j.ccell.2016.01.006
,2016, 'Autophagy and AML - Food for thought', Cell Death and Differentiation, 23, pp. 5 - 6, http://dx.doi.org/10.1038/cdd.2015.136
,2015, 'The molecular relationships between apoptosis, autophagy and necroptosis', Seminars in Cell and Developmental Biology, 39, pp. 63 - 69, http://dx.doi.org/10.1016/j.semcdb.2015.02.003
,