Select Publications
Journal articles
2020, 'Coherent electrical control of a single high-spin nucleus in silicon', Nature, 579, pp. 205 - 209, http://dx.doi.org/10.1038/s41586-020-2057-7
,2020, 'A silicon quantum-dot-coupled nuclear spin qubit', Nature Nanotechnology, 15, pp. 13 - 17, http://dx.doi.org/10.1038/s41565-019-0587-7
,2019, 'Single-spin qubits in isotopically enriched silicon at low magnetic field', Nature Communications, 10, http://dx.doi.org/10.1038/s41467-019-13416-7
,2019, 'Fidelity benchmarks for two-qubit gates in silicon', Nature, 569, pp. 532 - 536, http://dx.doi.org/10.1038/s41586-019-1197-0
,2019, 'Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices', Physical Review B, 99, http://dx.doi.org/10.1103/PhysRevB.99.205306
,2019, 'Controlling Spin-Orbit Interactions in Silicon Quantum Dots Using Magnetic Field Direction', Physical Review X, 9, http://dx.doi.org/10.1103/PhysRevX.9.021028
,2019, 'Silicon qubit fidelities approaching incoherent noise limits via pulse engineering', Nature Electronics, 2, pp. 151 - 158, http://dx.doi.org/10.1038/s41928-019-0234-1
,2018, 'Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout', Nature Communications, 9, http://dx.doi.org/10.1038/s41467-018-06039-x
,2018, 'Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy', Physical Review Applied, 10, http://dx.doi.org/10.1103/PhysRevApplied.10.044017
,2018, 'Coherent control via weak measurements in P 31 single-atom electron and nuclear spin qubits', Physical Review B, 98, http://dx.doi.org/10.1103/PhysRevB.98.155201
,2018, 'Robust electric dipole transition at microwave frequencies for nuclear spin qubits in silicon', Physical Review B, 98, http://dx.doi.org/10.1103/PhysRevB.98.075313
,2017, 'Integration of Single-Photon Emitters into 3C-SiC Microdisk Resonators', ACS Photonics, 4, pp. 462 - 468, http://dx.doi.org/10.1021/acsphotonics.6b00913
,2017, 'A single-atom quantum memory in silicon', Quantum Science and Technology, 2, pp. 015009, http://dx.doi.org/10.1088/2058-9565/aa63a4
,2017, 'A dressed spin qubit in silicon', Nature Nanotechnology, 12, pp. 61 - 66, http://dx.doi.org/10.1038/nnano.2016.178
,2016, 'Breaking the rotating wave approximation for a strongly driven dressed single-electron spin', Physical Review B, 94, http://dx.doi.org/10.1103/PhysRevB.94.161302
,2016, 'Optimization of a solid-state electron spin qubit using gate set tomography', New Journal of Physics, 18, pp. 103018, http://dx.doi.org/10.1088/1367-2630/18/10/103018
,2016, 'Transport of spin qubits with donor chains under realistic experimental conditions', Physical Review B, 94, http://dx.doi.org/10.1103/PhysRevB.94.045314
,2016, 'Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence', Review of Scientific Instruments, 87, http://dx.doi.org/10.1063/1.4959153
,2016, 'Bell's inequality violation with spins in silicon', Nature Nanotechnology, 11, pp. 242 - 246, http://dx.doi.org/10.1038/nnano.2015.262
,2015, 'A two-qubit logic gate in silicon', Nature, 526, pp. 410 - 414, http://dx.doi.org/10.1038/nature15263
,2015, 'Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking', Journal of Physics Condensed Matter, 27, http://dx.doi.org/10.1088/0953-8984/27/15/154205
,2015, 'Electrically controlling single-spin qubits in a continuous microwave field', Science Advances, http://dx.doi.org/10.1126/sciadv.1500022
,2014, 'High-fidelity adiabatic inversion of a 31P electron spin qubit in natural silicon', Applied Physics Letters, 104, http://dx.doi.org/10.1063/1.4867905
,2014, 'Robust two-qubit gates for donors in silicon controlled by hyperfine interactions', Physical Review X, 4, http://dx.doi.org/10.1103/PhysRevX.4.021044
,2014, 'Storing quantum information for 30 seconds in a nanoelectronic device', Nature Nanotechnology, 9, pp. 986 - 991, http://dx.doi.org/10.1038/nnano.2014.211
,2012, 'Climbing the Jaynes–Cummings ladder by photon counting', Journal of Nanophotonics, 6, pp. 061803 - 061803, http://dx.doi.org/10.1117/1.JNP.6.061803
,2012, 'A waveguide-coupled on-chip single-photon source', Physical Review X, 2, pp. 011014, http://dx.doi.org/10.1103/PhysRevX.2.011014
,2012, 'Broadband Purcell Enhanced Emission Dynamics of Quantum Dots in Linear Photonic Crystal waveguides', Journal of Applied Physics, 112, pp. 093520-1, http://dx.doi.org/10.1063/1.4764923
,2011, 'Luminescence spectra of quantum dots in microcavities. III. Multiple quantum dots', Physical Review B - Condensed Matter and Materials Physics, 84, http://dx.doi.org/10.1103/PhysRevB.84.195313
,2011, 'Correlation between emission intensity of self-assembled germanium islands and quality factor of silicon photonic crystal nanocavities', Physical Review B - Condensed Matter and Materials Physics, 84, http://dx.doi.org/10.1103/PhysRevB.84.085320
,2011, 'Nonresonant feeding of photonic crystal nanocavity modes by quantum dots', Journal of Applied Physics, 109, http://dx.doi.org/10.1063/1.3576137
,2010, 'Mutual coupling of two semiconductor quantum dots via an optical nanocavity', Physical Review B - Condensed Matter and Materials Physics, 82, http://dx.doi.org/10.1103/PhysRevB.82.075305
,2010, 'Temporal monitoring of nonresonant feeding of semiconductor nanocavity modes by quantum dot multiexciton transitions', Physical Review B - Condensed Matter and Materials Physics, 81, http://dx.doi.org/10.1103/PhysRevB.81.241302
,2010, 'Recent progress towards acoustically mediated carrier injection into individual nanostructures for single photon generation', Proceedings of SPIE - The International Society for Optical Engineering, 7610, http://dx.doi.org/10.1117/12.842511
,2010, 'Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities', New Journal of Physics, 12, http://dx.doi.org/10.1088/1367-2630/12/5/053005
,2009, 'Phonon-assisted transitions from quantum dot excitons to cavity photons', Physical Review B - Condensed Matter and Materials Physics, 80, http://dx.doi.org/10.1103/PhysRevB.80.201311
,2009, 'Cascaded exciton emission of an individual strain-induced quantum dot', Applied Physics Letters, 95, http://dx.doi.org/10.1063/1.3216807
,2009, 'Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities', Physical Review Letters, 103, http://dx.doi.org/10.1103/PhysRevLett.103.087405
,2009, 'Electrical control of spontaneous emission and strong coupling for a single quantum dot', New Journal of Physics, 11, http://dx.doi.org/10.1088/1367-2630/11/2/023034
,2009, 'Efficient and selective cavity-resonant excitation for single photon generation', New Journal of Physics, 11, http://dx.doi.org/10.1088/1367-2630/11/1/013031
,2008, 'Tunable single quantum dot nanocavities for cavity QED experiments', Journal of Physics Condensed Matter, 20, http://dx.doi.org/10.1088/0953-8984/20/45/454209
,2008, 'Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities', Physical Review B - Condensed Matter and Materials Physics, 77, http://dx.doi.org/10.1103/PhysRevB.77.161303
,2008, 'Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap', Physical Review B - Condensed Matter and Materials Physics, 77, http://dx.doi.org/10.1103/PhysRevB.77.073312
,2008, 'Observation of non resonant coupling of single quantum dots to photonic crystal nanocavity modes', Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, http://dx.doi.org/10.1109/QELS.2008.4553249
,2007, 'Efficient spatial redistribution of quantum dot spontaneous emission from two-dimensional photonic crystals', Applied Physics Letters, 91, http://dx.doi.org/10.1063/1.2757134
,