Select Publications
Book Chapters
2012, 'Luminescence spectra of quantum dots in microcavities', in Jahnke F (ed.), Quantum optics with semiconductor nanostructures, Woodhead Publishing Limited
,2012, '9 Luminescence spectra of quantum dots in microcavities', in Quantum Optics with Semiconductor Nanostructures, Elsevier, pp. 293 - 331, http://dx.doi.org/10.1533/9780857096395.3.293
,2012, 'Contributor contact details', in Quantum Optics with Semiconductor Nanostructures, Elsevier, pp. xiii - xviii, http://dx.doi.org/10.1016/b978-0-85709-232-8.50019-x
,Journal articles
2024, 'Bounds to electron spin qubit variability for scalable CMOS architectures', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-48557-x
,2024, 'Entangling gates on degenerate spin qubits dressed by a global field', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52010-4
,2024, 'Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52795-4
,2024, 'Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots', Nature Physics, 20, pp. 1804 - 1809, http://dx.doi.org/10.1038/s41567-024-02614-w
,2024, 'Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays', Physical Review B, 110, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2024, 'High-fidelity spin qubit operation and algorithmic initialization above 1 K', Nature, 627, pp. 772 - 777, http://dx.doi.org/10.1038/s41586-024-07160-2
,2024, 'Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis', Applied Physics Letters, 124, http://dx.doi.org/10.1063/5.0179958
,2024, 'Challenges in advancing our understanding of atomic-like quantum systems: Theory and experiment', MRS Bulletin, 49, pp. 256 - 276, http://dx.doi.org/10.1557/s43577-023-00659-5
,2024, 'Hyperfine Spectroscopy and Fast, All-Optical Arbitrary State Initialization and Readout of a Single, Ten-Level Ge 73 Vacancy Nuclear Spin Qudit in Diamond', Physical Review Letters, 132, http://dx.doi.org/10.1103/PhysRevLett.132.060603
,2024, 'Improved Single-Shot Qubit Readout Using Twin rf-SET Charge Correlations', PRX Quantum, 5, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2023, 'Negative Refractive Index in Dielectric Crystals Containing Stoichiometric Rare-Earth Ions', Advanced Optical Materials, 11, http://dx.doi.org/10.1002/adom.202301167
,2023, 'Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron Nitride', Advanced Quantum Technologies, 6, http://dx.doi.org/10.1002/qute.202300038
,2023, 'High-fidelity control of a nitrogen-vacancy-center spin qubit at room temperature using the sinusoidally modulated, always rotating, and tailored protocol', Physical Review A, 108, http://dx.doi.org/10.1103/PhysRevA.108.022606
,2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202208557
,2023, 'Control of dephasing in spin qubits during coherent transport in silicon', Physical Review B, 107, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2023, 'On-demand electrical control of spin qubits', Nature Nanotechnology, 18, pp. 131 - 136, http://dx.doi.org/10.1038/s41565-022-01280-4
,2022, 'Coherent control of electron spin qubits in silicon using a global field', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00645-w
,2022, 'Implementation of an advanced dressing protocol for global qubit control in silicon', Applied Physics Reviews, 9, http://dx.doi.org/10.1063/5.0096467
,2022, 'Observing hyperfine interactions of NV-centers in diamond in an advanced quantum teaching lab', American Journal of Physics, 90, pp. 550 - 560, http://dx.doi.org/10.1119/5.0075519
,2022, 'Indirect control of the 29SiV- nuclear spin in diamond', Physical Review B, 105, http://dx.doi.org/10.1103/PhysRevB.105.205435
,2022, 'Erratum: Integrated room temperature single-photon source for quantum key distribution (Opt. Lett. (2022) 47 (1673) DOI: 10.48550/arXiv.2201.11882)', Optics Letters, 47, pp. 2161 - 2161, http://dx.doi.org/10.1364/OL.460614
,2022, 'Integrated room temperature single-photon source for quantum key distribution', Optics Letters, 47, pp. 1673 - 1676, http://dx.doi.org/10.1364/OL.454450
,2022, 'Degenerate Parametric Amplification via Three-Wave Mixing Using Kinetic Inductance', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.034064
,2022, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348 - 353, http://dx.doi.org/10.1038/s41586-021-04292-7
,2022, 'Development of an Undergraduate Quantum Engineering Degree', IEEE Transactions on Quantum Engineering, 3, http://dx.doi.org/10.1109/TQE.2022.3157338
,2022, 'Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202105488
,2021, 'Quantum computation protocol for dressed spins in a global field', Physical Review B, 104, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, 'Bell-state tomography in a silicon many-electron artificial molecule', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-021-23437-w
,2021, 'Coherent spin qubit transport in silicon', Nature Communications, 12, pp. 4114, http://dx.doi.org/10.1038/s41467-021-24371-7
,2021, 'Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device', Nature Communications, 12, pp. 181, http://dx.doi.org/10.1038/s41467-020-20424-5
,2021, 'Pulse engineering of a global field for robust and universal quantum computation', Physical Review A, 104, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, 'Quantum-coherent nanoscience', Nature Nanotechnology, 16, pp. 1318 - 1329, http://dx.doi.org/10.1038/s41565-021-00994-1
,2021, 'Fast Coherent Control of a Nitrogen-Vacancy-Center Spin Ensemble Using a Dielectric Resonator at Cryogenic Temperatures', Physical Review Applied, 16, http://dx.doi.org/10.1103/PhysRevApplied.16.044051
,2021, 'A near-ideal degenerate parametric amplifier', Phys. Rev. Applied, 17, pp. 034064, http://dx.doi.org/10.1103/PhysRevApplied.17.034064
,2021, 'Implementation of the SMART protocol for global qubit control in silicon', Applied Physics Reviews, 9, pp. 031409, http://dx.doi.org/10.1063/5.0096467
,2021, 'An ultra-stable 1.5 T permanent magnet assembly for qubit experiments at cryogenic temperatures', Review of Scientific Instruments, 92, http://dx.doi.org/10.1063/5.0055318
,2021, 'Single-electron spin resonance in a nanoelectronic device using a global field', Science Advances, 7, http://dx.doi.org/10.1126/sciadv.abg9158
,2021, 'A High-Sensitivity Charge Sensor for Silicon Qubits above 1 K', Nano Letters, 21, pp. 6328 - 6335, http://dx.doi.org/10.1021/acs.nanolett.1c01003
,2021, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348, http://dx.doi.org/10.1038/s41586-021-04292-7
,2021, 'Improving Semiconductor Device Modeling for Electronic Design Automation by Machine Learning Techniques', , http://dx.doi.org/10.1109/TED.2023.3307051
,2021, 'Fast coherent control of an NV- spin ensemble using a KTaO3 dielectric resonator at cryogenic temperatures', , http://dx.doi.org/10.1103/PhysRevApplied.16.044051
,2021, 'Roadmap on quantum nanotechnologies', Nanotechnology, 32, http://dx.doi.org/10.1088/1361-6528/abb333
,2021, 'Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon', Nano Letters, 21, pp. 1517 - 1522, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2021, 'Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control', PRX Quantum, 2, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2020, 'Coherent control of NV-centers in diamond in a quantum teaching lab', American Journal of Physics, 88, pp. 1156 - 1169, http://dx.doi.org/10.1119/10.0001905
,2020, 'Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-019-14053-w
,2020, 'Single-electron operation of a silicon-CMOS 2 × 2 quantum dot array with integrated charge sensing', Nano Letters, 20, pp. 7882 - 7888, http://dx.doi.org/10.1021/acs.nanolett.0c02397
,