Select Publications

Journal articles

Smith NJ; May LT; Grimsey NL, 2024, 'Highlights and hot topics in GPCR research from ‘Down Under’', British Journal of Pharmacology, 181, pp. 2091 - 2094, http://dx.doi.org/10.1111/bph.16419

Patel K; Smith NJ, 2024, 'Primary cilia, A-kinase anchoring proteins and constitutive activity at the orphan G protein-coupled receptor GPR161: A tale about a tail', British Journal of Pharmacology, 181, pp. 2182 - 2196, http://dx.doi.org/10.1111/bph.16053

Smith NJ; Murray F, 2024, 'Shifting our perspective on orphan G protein-coupled receptors', Nature Structural and Molecular Biology, 31, pp. 582 - 583, http://dx.doi.org/10.1038/s41594-024-01270-1

Zeng YC; Sobti M; Quinn A; Smith NJ; Brown SHJ; Vandenberg JI; Ryan RM; O’Mara ML; Stewart AG, 2023, 'Structural basis of promiscuous substrate transport by Organic Cation Transporter 1', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-42086-9

Machet J; Park M; Richardson A; Carnell M; Mouat MA; Smith NJ; Turner N; Cochran BJ; Rye KA; Di Girolamo N, 2023, 'Type 2 diabetes influences intraepithelial corneal nerve parameters and corneal stromal-epithelial nerve penetration sites', Journal of Diabetes Investigation, 14, pp. 591 - 601, http://dx.doi.org/10.1111/jdi.13974

Stavrou MR; So SS; Finch AM; Ballouz S; Smith NJ, 2023, 'Gene expression analyses of TAS1R taste receptors relevant to the treatment of cardiometabolic disease', Chemical Senses, 48, http://dx.doi.org/10.1093/chemse/bjad027

Bursill CA; Smith NJ; Palpant N; Tan I; Sunde M; Harvey RP; Lewis B; Figtree GA; Vandenberg JI, 2022, 'Don't Turn Off the Tap! The Importance of Discovery Science to the Australian Cardiovascular Sector and Improving Clinical Outcomes Into the Future', Heart Lung and Circulation, 31, pp. 1321 - 1332, http://dx.doi.org/10.1016/j.hlc.2022.06.669

Nicks AM; Holman SR; Chan AY; Tsang M; Young PE; Humphreys DT; Naqvi N; Husain A; Li M; Smith NJ; Iismaa SE; Graham RM, 2022, 'Standardised method for cardiomyocyte isolation and purification from individual murine neonatal, infant, and adult hearts', Journal of Molecular and Cellular Cardiology, 170, pp. 47 - 59, http://dx.doi.org/10.1016/j.yjmcc.2022.05.012

Wilkins BP; Finch AM; Wang Y; Smith NJ, 2022, 'Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis?', Trends in Endocrinology and Metabolism, 33, pp. 481 - 492, http://dx.doi.org/10.1016/j.tem.2022.04.008

Mouat MA; Wilkins BP; Ding E; Govindaraju H; Coleman JLJ; Graham RM; Turner N; Smith NJ, 2022, 'Metabolic Profiling of Mice with Deletion of the Orphan G Protein-Coupled Receptor, GPR37L1', Cells, 11, http://dx.doi.org/10.3390/cells11111814

Wang Z; Chan HW; Gambarotta G; Smith NJ; Purdue BW; Pennisi DJ; Porrello ER; O'Brien SL; Reichelt ME; Thomas WG; Paravicini TM, 2021, 'Stimulation of the four isoforms of receptor tyrosine kinase ErbB4, but not ErbB1, confers cardiomyocyte hypertrophy', Journal of Cellular Physiology, 236, pp. 8160 - 8170, http://dx.doi.org/10.1002/jcp.30487

Nicks AM; Holman SR; Chan AY; Pang C-HJ; Tsang M; Naqvi N; Husain A; Li M; Humphreys DT; Smith NJ; Iismaa SE; Graham RM, 2021, 'Abstract 11948: A Standardized Method to Isolate and Purify Cardiomyocytes from Individual Mouse Hearts Irrespective of Postnatal Age', Circulation, 144, http://dx.doi.org/10.1161/circ.144.suppl_1.11948

Mouat MA; Coleman JLJ; Wu J; dos Remedios CG; Feneley MP; Graham RM; Smith NJ, 2021, 'Involvement of GPR37L1 in murine blood pressure regulation and human cardiac disease pathophysiology', American Journal of Physiology - Heart and Circulatory Physiology, 321, pp. H807 - H817, http://dx.doi.org/10.1152/ajpheart.00198.2021

Smith NJ; Grant JN; Moon JI; So SS; Finch AM, 2021, 'Critically evaluating sweet taste receptor expression and signaling through a molecular pharmacology lens', FEBS Journal, 288, pp. 2660 - 2672, http://dx.doi.org/10.1111/febs.15768

Ngo T; Wilkins BP; So SS; Keov P; Chahal KK; Finch AM; Coleman JLJ; Kufareva I; Smith NJ, 2021, 'Orphan receptor GPR37L1 remains unliganded', Nature Chemical Biology, 17, pp. 383 - 386, http://dx.doi.org/10.1038/s41589-021-00748-z

Ngo T; Ilatovskiy AV; Stewart AG; Coleman JLJ; McRobb FM; Riek RP; Graham RM; Abagyan R; Kufareva I; Smith NJ, 2021, 'Retraction Note: Orphan receptor ligand discovery by pickpocketing pharmacological neighbors (Nature Chemical Biology, (2017), 13, 2, (235-242), 10.1038/nchembio.2266)', Nature Chemical Biology, 17, pp. 501, http://dx.doi.org/10.1038/s41589-021-00746-1

Mouat MA; Jackson KL; Coleman JLJ; Paterson MR; Graham RM; Head GA; Smith NJ, 2021, 'Deletion of Orphan G Protein-Coupled Receptor GPR37L1 in Mice Alters Cardiovascular Homeostasis in a Sex-Specific Manner', Frontiers in Pharmacology, 11, http://dx.doi.org/10.3389/fphar.2020.600266

Nicks AM; Kesteven SH; Li M; Wu J; Chan AY; Naqvi N; Husain A; Feneley MP; Smith NJ; Iismaa SE; Graham RM, 2020, 'Pressure overload by suprarenal aortic constriction in mice leads to left ventricular hypertrophy without c-Kit expression in cardiomyocytes', Scientific Reports, 10, http://dx.doi.org/10.1038/s41598-020-72273-3

Coleman JLJ; Ngo T; Smythe RE; Cleave AJ; Jones NM; Graham RM; Smith NJ, 2020, 'The N-terminus of GPR37L1 is proteolytically processed by matrix metalloproteases', Scientific Reports, 10, http://dx.doi.org/10.1038/s41598-020-76384-9

Coleman JLJ; Ngo T; Smith NJ, 2020, 'Corrigendum to “The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era” [Cellular Signalling 2017 May;33:1–9](S0898656817300451)(10.1016/j.cellsig.2017.02.004)', Cellular Signalling, 68, http://dx.doi.org/10.1016/j.cellsig.2019.109510

Ng CA; Perry MD; Liang W; Smith NJ; Foo B; Shrier A; Lukacs GL; Hill AP; Vandenberg JI, 2020, 'High-throughput phenotyping of heteromeric human ether-à-go-go-related gene potassium channel variants can discriminate pathogenic from rare benign variants', Heart Rhythm, 17, pp. 492 - 500, http://dx.doi.org/10.1016/j.hrthm.2019.09.020

Ngo T; Wilkins B; So S; Keov P; Chahal K; Finch A; Coleman JLJ; Kufareva I; Smith N, 2020, 'Orphan G protein-coupled receptor, GPR37L1: pharmacological toolbox empty once again', , http://dx.doi.org/10.1101/2020.09.11.290486

Coleman J; Ngo T; Smythe R; Cleave A; Jones N; Graham R; Smith N, 2020, 'The N-terminus of GPR37L1 is proteolytically processed by matrix metalloproteases', , http://dx.doi.org/10.1101/2020.06.27.174847

Coleman JLJ; Ngo T; Schmidt J; Mrad N; Liew CK; Jones NM; Graham RM; Smith NJ, 2019, 'Retraction: Metalloprotease cleavage of the N terminus of the orphan G protein-coupled receptor GPR37L1 reduces its constitutive activity (Science Signaling (2016) 9 (ra36) DOI: 10.1126/scisignal.aad1089)', Science Signaling, 12, http://dx.doi.org/10.1126/scisignal.aba2063

Montgomery MK; Osborne B; Brandon AE; O'Reilly L; Fiveash CE; Brown SHJ; Wilkins BP; Samsudeen A; Yu J; Devanapalli B; Hertzog A; Tolun AA; Kavanagh T; Cooper AA; Mitchell TW; Biden TJ; Smith NJ; Cooney GJ; Turner N, 2019, 'Regulation of mitochondrial metabolism in murine skeletal muscle by the medium-chain fatty acid receptor Gpr84', FASEB Journal, 33, pp. 12264 - 12276, http://dx.doi.org/10.1096/fj.201900234R

Sobti M; Ishmukhametov R; Bouwer JC; Ayer A; Suarna C; Smith NJ; Christie M; Stocker R; Duncan TM; Stewart AG, 2019, 'Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP', eLife, 8, http://dx.doi.org/10.7554/eLife.43864

Mouat MA; Coleman JLJ; Smith NJ, 2018, 'GPCRs in context: sexual dimorphism in the cardiovascular system', British Journal of Pharmacology, 175, pp. 4047 - 4059, http://dx.doi.org/10.1111/bph.14160

Coleman JLJ; Mouat MA; Wu J; Jancovski N; Bassi JK; Chan AY; Humphreys DT; Mrad N; Yu ZY; Ngo T; Iismaa S; Dos Remedios CG; Feneley MP; Allen AM; Graham RM; Smith NJ, 2018, 'Orphan receptor GPR37L1 contributes to the sexual dimorphism of central cardiovascular control', Biology of Sex Differences, 9, pp. 14, http://dx.doi.org/10.1186/s13293-018-0173-y

Wirasinha RC; Vijayan D; Smith NJ; Parnell GP; Swarbrick A; Brink R; King C; Stewart G; Booth DR; Batten M, 2018, 'GPR65 inhibits experimental autoimmune encephalomyelitis through CD4+ T cell independent mechanisms that include effects on iNKT cells', Immunology and Cell Biology, 96, pp. 128 - 136, http://dx.doi.org/10.1111/imcb.1031

Coleman JLJ; Ngo T; Smith NJ, 2017, 'The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era', Cellular Signalling, 33, pp. 1 - 9, http://dx.doi.org/10.1016/j.cellsig.2017.02.004

Ngo T; Ilatovskiy AV; Stewart AG; Coleman JLJ; McRobb FM; Riek RP; Graham RM; Abagyan R; Kufareva I; Smith NJ, 2017, 'Orphan receptor ligand discovery by pickpocketing pharmacological neighbors', Nature Chemical Biology, 13, pp. 235 - 242, http://dx.doi.org/10.1038/nchembio.2266

McNamara JW; Li A; Smith NJ; Lal S; Graham RM; Kooiker KB; van Dijk SJ; Remedios CGD; Harris SP; Cooke R, 2016, 'Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes', Journal of Molecular and Cellular Cardiology, 94, pp. 65 - 71, http://dx.doi.org/10.1016/j.yjmcc.2016.03.009

Chowdhury MKH; Wu LE; Coleman JLJ; Smith NJ; Morris MJ; Shepherd PR; Smith GC; Chowdhury M, 2016, 'Niclosamide blocks glucagon phosphorylation of Ser552 on β-catenin in primary rat hepatocytes via PKA signalling', Biochemical Journal, 473, pp. 1247 - 1255, http://dx.doi.org/10.1042/BCJ20160121

Soetanto R; Hynes CJ; Patel HR; Humphreys DT; Evers M; Duan G; Parker BJ; Archer SK; Clancy JL; Graham RM; Beilharz TH; Smith NJ; Preiss T, 2016, 'Role of miRNAs and alternative mRNA 3'-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy', Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1859, pp. 744 - 756, http://dx.doi.org/10.1016/j.bbagrm.2016.03.010

Coleman JLJ; Ngo T; Schmidt J; Mrad N; Liew CK; Jones NM; Graham RM; Smith NJ, 2016, 'Metalloprotease cleavage of the N terminus of the orphan G protein-coupled receptor GPR37L1 reduces its constitutive activity', Science Signaling, 9, http://dx.doi.org/10.1126/scisignal.aad1089

Grundmann M; Tikhonova IG; Hudson BD; Smith NJ; Mohr K; Ulven T; Milligan G; Kenakin T; Kostenis E, 2016, 'A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor', Cell Chemical Biology, 23, pp. 392 - 403, http://dx.doi.org/10.1016/j.chembiol.2016.02.014

Ngo T; Kufareva I; Coleman JLJ; Graham RM; Abagyan R; Smith NJ, 2016, 'Identifying ligands at orphan GPCRs: current status using structure-based approaches', British Journal of Pharmacology, 173, pp. 2934 - 2951, http://dx.doi.org/10.1111/bph.13452

Foster SR; Porrello ER; Stefani M; Smith NJ; Molenaar P; Dos Remedios CG; Thomas WG; Ramialison M, 2015, 'Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation', Naunyn-Schmiedeberg's Archives of Pharmacology, 388, pp. 1009 - 1027, http://dx.doi.org/10.1007/s00210-015-1118-1

Smith NJ, 2015, 'Drug discovery opportunities at the endothelin B receptor-related orphan g protein-coupled receptors, GPR37 and GPR37L1', Frontiers in Pharmacology, 6, http://dx.doi.org/10.3389/fphar.2015.00275

Coleman JLJ; Brennan K; Ngo T; Balaji P; Graham RM; Smith NJ, 2015, 'Rapid knockout and reporter mouse line generation and breeding colony establishment using EUCOMM conditional-ready embryonic stem cells: A case study', Frontiers in Endocrinology, 6, pp. 105, http://dx.doi.org/10.3389/fendo.2015.00105

Ngo T; Coleman JLJ; Smith NJ, 2015, 'Using constitutive activity to defi ne appropriate high-throughput screening assays for orphan G protein-coupled receptors', Methods in Molecular Biology, 1272, pp. 91 - 106, http://dx.doi.org/10.1007/978-1-4939-2336-6_7

Yu ZY; Tan JC; McMahon AC; Iismaa SE; Xiao H; Kesteven SH; Reichelt ME; Mohl MC; Smith NJ; Fatkin D; Allen D; Head SI; Graham RM; Feneley MP, 2014, 'RhoA/ROCK signaling and pleiotropic α1A-adrenergic receptor regulation of cardiac contractility', PLoS ONE, 9, pp. e99024, http://dx.doi.org/10.1371/journal.pone.0099024

Smith NJ, 2012, 'Low affinity GPCRs for metabolic intermediates: Challenges for pharmacologists', Frontiers in Endocrinology, 3, pp. 1, http://dx.doi.org/10.3389/fendo.2012.00001

Smith NJ; Ward RJ; Stoddart LA; Hudson BD; Kostenis E; Ulven T; Morris JC; Tränkle C; Tikhonova IG; Adams DR; Milligan G, 2011, 'Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator', Molecular Pharmacology, 80, pp. 163 - 173, http://dx.doi.org/10.1124/mol.110.070789

Smith NJ; Chan HW; Qian H; Bourne AM; Hannan KM; Warner FJ; Ritchie RH; Pearson RB; Hannan RD; Thomas WG, 2011, 'Determination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy', Hypertension, 57, pp. 973 - 980, http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.166710

Schmidt J; Smith NJ; Christiansen E; Tikhonova IG; Grundmann M; Hudson BD; Ward RJ; Drewke C; Milligan G; Kostenis E; Ulven T, 2011, 'Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: Identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3', Journal of Biological Chemistry, 286, pp. 10628 - 10640, http://dx.doi.org/10.1074/jbc.M110.210872

Flores-Muñoz M; Smith NJ; Haggerty C; Milligan G; Nicklin SA, 2011, 'Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor', Journal of Physiology, 589, pp. 939 - 951, http://dx.doi.org/10.1113/jphysiol.2010.203075

Smith NJ; Bennett KA; Milligan G, 2011, 'When simple agonism is not enough: Emerging modalities of GPCR ligands', Molecular and Cellular Endocrinology, 331, pp. 241 - 247, http://dx.doi.org/10.1016/j.mce.2010.07.009

Hudson BD; Smith NJ; Milligan G, 2011, 'Experimental Challenges to Targeting Poorly Characterized GPCRs. Uncovering the Therapeutic Potential for Free Fatty Acid Receptors', , 62, pp. 175 - 218, http://dx.doi.org/10.1016/B978-0-12-385952-5.00006-3

Tikhonova IG; Smith NJ; Ward RJ; Stoddart LA; Hudson BD; Kostenis E; Ulven T; Morris JC; Adams DR; Milligan G, 2011, 'Probing Allosteric Binding Site Mapping in the Free Fatty Acid 2 receptor', Biophysical Journal, 100, pp. 52a - 52a, http://dx.doi.org/10.1016/j.bpj.2010.12.483


Back to profile page