Select Publications
Book Chapters
2008, 'Near-Field Optical Micromanipulation', in Structured Light and its Applications, pp. 107 - 137, http://dx.doi.org/10.1016/B978-0-12-374027-4.00005-0
,2008, 'Near-Field Optical Micromanipulation', in Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, pp. 107 - 137, http://dx.doi.org/10.1016/B978-0-12-374027-4.00005-0
,2008, 'Chapter 5 Near-Field Optical Micromanipulation', in Structured Light and Its Applications, Elsevier, pp. 107 - 137, http://dx.doi.org/10.1016/b978-0-12-374027-4.00005-0
,Journal articles
2024, 'Semiconductor thermoradiative power conversion', Nature Photonics, 18, pp. 1137 - 1146, http://dx.doi.org/10.1038/s41566-024-01537-5
,2024, 'Optical Tweezers Assembled Nanodiamond Quantum Sensors', Nano Letters, 24, pp. 12188 - 12195, http://dx.doi.org/10.1021/acs.nanolett.4c03195
,2024, 'Correction to: Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy (Nature Photonics, (2024), 18, 9, (913-921), 10.1038/s41566-024-01462-7)', Nature Photonics, 18, pp. 998, http://dx.doi.org/10.1038/s41566-024-01518-8
,2024, 'Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy', Nature Photonics, 18, pp. 913 - 921, http://dx.doi.org/10.1038/s41566-024-01462-7
,2024, 'Fabrication of transferable ultrathin Au films with eminent thermal stability via a nanocrystalline MoS
2024, 'Size control of MoS
2023, 'Roadmap for optical tweezers', JPhys Photonics, 5, http://dx.doi.org/10.1088/2515-7647/acb57b
,2022, 'Exploration of sub-bandgap states in 2D halide perovskite single-crystal photodetector', npj 2D Materials and Applications, 6, http://dx.doi.org/10.1038/s41699-022-00317-5
,2022, 'Lanthanide Ion Resonance-Driven Rayleigh Scattering of Nanoparticles for Dual-Modality Interferometric Scattering Microscopy', Advanced Science, 9, http://dx.doi.org/10.1002/advs.202203354
,2022, 'Insight into the growth behaviors of MoS
2022, 'Thermoradiative Power Conversion from HgCdTe Photodiodes and Their Current−Voltage Characteristics', ACS Photonics, 9, pp. 1535 - 1540, http://dx.doi.org/10.1021/acsphotonics.2c00223
,2022, 'Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy (Adv. Sci. 32/2022)', Advanced Science, 9, http://dx.doi.org/10.1002/advs.202270207
,2021, 'Differential Interference Contrast-Based Interrogation of Plasmonic Gold Nanohole Arrays for Label-Free Imaging Sensing', ACS Applied Nano Materials, 4, pp. 10657 - 10664, http://dx.doi.org/10.1021/acsanm.1c02100
,2021, 'Designing high-performance nighttime thermoradiative systems for harvesting energy from outer space: Comment', Optics Letters, 46, pp. 5124, http://dx.doi.org/10.1364/OL.426514
,2021, 'Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles', Nature Nanotechnology, 16, pp. 531 - 537, http://dx.doi.org/10.1038/s41565-021-00852-0
,2021, 'Optimizing Optical Tweezers Experiments for Magnetic Resonance Sensing with Nanodiamonds', ACS Photonics, 8, pp. 1214 - 1221, http://dx.doi.org/10.1021/acsphotonics.1c00137
,2020, 'High-resolution light-activated electrochemistry on amorphous silicon-based photoelectrodes', Chemical Communications, 56, pp. 7435 - 7438, http://dx.doi.org/10.1039/d0cc02959a
,2020, 'Impact of metal crystallinity-related morphologies on the sensing performance of plasmonic nanohole arrays', Nanoscale, 12, pp. 7577 - 7585, http://dx.doi.org/10.1039/d0nr00619j
,2020, 'Optical tweezers-based characterisation of gold core-satellite plasmonic nano-assemblies incorporating thermo-responsive polymers', Nanoscale, 12, pp. 1680 - 1687, http://dx.doi.org/10.1039/c9nr07891f
,2019, 'Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples', Nature Communications, 10, pp. 2109, http://dx.doi.org/10.1038/s41467-019-10147-7
,2019, 'Sb dissociative surface coverage model for incorporation of antimony in GaAsSb layers grown on GaAs (0 0 1) substrates', Journal of Crystal Growth, 526, http://dx.doi.org/10.1016/j.jcrysgro.2019.125231
,2019, 'Micropatterning of porous silicon Bragg reflectors with poly(ethylene glycol) to fabricate cell microarrays: Towards single cell sensing', Biosensors and Bioelectronics, 127, pp. 229 - 235, http://dx.doi.org/10.1016/j.bios.2018.12.001
,2018, 'Vertical Integration of Cell-Laden Hydrogels with Bioinspired Photonic Crystal Membranes', Advanced Materials Interfaces, 5, http://dx.doi.org/10.1002/admi.201801233
,2018, 'Manipulating the Quantum Coherence of Optically Trapped Nanodiamonds', ACS Photonics, 5, pp. 4491 - 4496, http://dx.doi.org/10.1021/acsphotonics.8b00946
,2018, 'Optimising porous silicon Bragg reflectors for narrow spectral resonances', Journal of Applied Physics, 124, pp. 163103, http://dx.doi.org/10.1063/1.5048618
,2018, 'A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis', Biosensors and Bioelectronics, 117, pp. 530 - 536, http://dx.doi.org/10.1016/j.bios.2018.06.066
,2018, 'Using double chirping to minimise absorption in lossy broadband dielectric reflectors', Optical Materials Express, 8, pp. 1827 - 1832, http://dx.doi.org/10.1364/OME.8.001827
,2018, 'Extending omnidirectional reflection bands in one-dimensional photonic crystals', Journal of Physics Communications, 2, http://dx.doi.org/10.1088/2399-6528/aabeab
,2018, 'Noise induced aperiodic rotations of particles trapped by a non-conservative force', Chaos, 28, pp. 043101 - 043101, http://dx.doi.org/10.1063/1.5018443
,2018, 'Biophotonics feature: Introduction', Biomedical Optics Express, 9, pp. 1229 - 1231, http://dx.doi.org/10.1364/BOE.9.001229
,2018, 'Using light scattering to resolve Brownian rotation dynamics of optically trapped Au nanorods', Journal of Applied Physics, 123, http://dx.doi.org/10.1063/1.5018334
,2018, 'Porous Silicon: Vertical Integration of Cell‐Laden Hydrogels with Bioinspired Photonic Crystal Membranes (Adv. Mater. Interfaces 23/2018)', Advanced Materials Interfaces, 5, http://dx.doi.org/10.1002/admi.201870115
,2018, 'Ultrafast Fabrication of High-Aspect-Ratio Macropores in P-Type Silicon: Toward the Mass Production of Microdevices,', Materials Research Letters, 6, pp. 648 - 654, http://dx.doi.org/10.1080/21663831.2018.1527788
,2017, 'Difference in hot carrier cooling rate between Langmuir-Blodgett and drop cast PbS QDs films due to strong electron-phonon coupling', Nanoscale
,2017, 'Influence of GaAsSb structural properties on the optical properties of InAs/GaAsSb quantum dots', Physica E: Low-Dimensional Systems and Nanostructures, 94, pp. 7 - 14, http://dx.doi.org/10.1016/j.physe.2017.07.007
,2017, 'Effect of Sb and As spray on emission characteristics of InAs quantum dots with AlAs capping layer', Journal of Physics D: Applied Physics, 50, http://dx.doi.org/10.1088/1361-6463/aa8660
,2017, 'Using back focal plane interferometry to probe the influence of Zernike aberrations in optical tweezers', Optics Letters, 42, pp. 2968 - 2971, http://dx.doi.org/10.1364/OL.42.002968
,2017, 'Electrochemical fabrication of silicon-based micro-nano-hybrid porous arrays for hybrid-lattice photonic crystal', ECS Journal of Solid State Science and Technology, 6, pp. P893 - P897, http://dx.doi.org/10.1149/2.0361712jss
,2016, 'Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity', Materials Science and Engineering C, 64, pp. 167 - 172, http://dx.doi.org/10.1016/j.msec.2016.03.061
,2016, 'Paper-Based Sensor for Monitoring Sun Exposure', ACS Sensors, 1, pp. 775 - 780, http://dx.doi.org/10.1021/acssensors.6b00244
,2016, 'Synthesis of type-II CdSe(S)/Fe
2016, 'Optical Manipulation and Spectroscopy of Silicon Nanoparticles Exhibiting Dielectric Resonances', Nano Letters, 16, pp. 1903 - 1910, http://dx.doi.org/10.1021/acs.nanolett.5b05057
,2016, 'Nonconservative dynamics of optically trapped high-aspect-ratio nanowires', Physical Review E, 93, http://dx.doi.org/10.1103/PhysRevE.93.022137
,2016, 'Synthesis of type-II CdSe(S)/Fe2O3 core/shell quantum dots: the effect of shell on the properties of core/shell quantum dots', Journal of Materials Science, pp. 1 - 7, http://dx.doi.org/10.1007/s10853-016-9828-4
,2016, 'Decoupling the effects of confinement and passivation on semiconductor quantum dots', Physical Chemistry Chemical Physics, 18, pp. 19765 - 19772, http://dx.doi.org/10.1039/c6cp03438a
,2015, 'Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites', Applied Physics Letters, 107, pp. 231902, http://dx.doi.org/10.1063/1.4936418
,2015, 'Semiconductor nanostructures towards electronic and opto-electronic device applications V', Physica Status Solidi (C) Current Topics in Solid State Physics, 12, pp. 1365 - 1366, http://dx.doi.org/10.1002/pssc.201570108
,