Select Publications
Journal articles
2024, 'OBSERVING OCEAN BOUNDARY CURRENTS LESSONS LEARNED FROM SIX REGIONS WITH MATURE OBSERVATIONAL AND MODELING SYSTEMS', Oceanography, 37, http://dx.doi.org/10.5670/oceanog.2024.504
,2024, 'Assessing impacts of observations on ocean circulation models with examples from coastal, shelf, and marginal seas', Frontiers in Marine Science, 11, http://dx.doi.org/10.3389/fmars.2024.1458036
,2024, 'Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system', Geoscientific Model Development, 17, pp. 2359 - 2386, http://dx.doi.org/10.5194/gmd-17-2359-2024
,2024, 'Assessing the impact of subsurface temperature observations from fishing vessels on temperature and heat content estimates in shelf seas: a New Zealand case study using Observing System Simulation Experiments', Frontiers in Marine Science, 11, http://dx.doi.org/10.3389/fmars.2024.1358193
,2023, 'Characterizing the Variability of Boundary Currents and Ocean Heat Content Around New Zealand Using a Multi-Decadal High-Resolution Regional Ocean Model', Journal of Geophysical Research: Oceans, 128, http://dx.doi.org/10.1029/2022JC018624
,2023, 'Impact of assimilating repeated subsurface temperature transects on state estimates of a western boundary current', Frontiers in Marine Science, 9, http://dx.doi.org/10.3389/fmars.2022.1084784
,2023, 'Moana Ocean Hindcast - a >25-year simulation for New Zealand waters using the Regional Ocean Modeling System (ROMS) v3.9 model', Geoscientific Model Development, 16, pp. 211 - 231, http://dx.doi.org/10.5194/gmd-16-211-2023
,2023, 'How does 4DVar data assimilation affect the vertical representation of mesoscale eddies? A case study with observing system simulation experiments (OSSEs) using ROMS v3.9', Geoscientific Model Development, 16, pp. 157 - 178, http://dx.doi.org/10.5194/gmd-16-157-2023
,2022, 'Drivers of upper ocean heat content extremes around New Zealand revealed by Adjoint Sensitivity Analysis', Frontiers in Climate, 4, http://dx.doi.org/10.3389/fclim.2022.980990
,2022, 'Drivers of ocean warming in the western boundary currents of the Southern Hemisphere', Nature Climate Change, 12, pp. 901 - 909, http://dx.doi.org/10.1038/s41558-022-01473-8
,2022, 'Observing system simulation experiments reveal that subsurface temperature observations improve estimates of circulation and heat content in a dynamic western boundary current', Geoscientific Model Development, 15, pp. 6541 - 6565, http://dx.doi.org/10.5194/gmd-15-6541-2022
,2022, 'Including Tides Improves Subtidal Prediction in a Region of Strong Surface and Internal Tides and Energetic Mesoscale Circulation', Journal of Geophysical Research: Oceans, 127, http://dx.doi.org/10.1029/2021JC018314
,2022, 'Impact of Mesoscale Circulation on the Structure of River Plumes During Large Rainfall Events Inshore of the East Australian Current', Frontiers in Marine Science, 9, http://dx.doi.org/10.3389/fmars.2022.815348
,2022, 'Variability and Drivers of Ocean Temperature Extremes in a Warming Western Boundary Current', Journal of Climate, 35, pp. 1097 - 1111, http://dx.doi.org/10.1175/JCLI-D-21-0622.1
,2021, 'Dynamics of Interannual Eddy Kinetic Energy Modulations in a Western Boundary Current', Geophysical Research Letters, 48, http://dx.doi.org/10.1029/2021GL094115
,2021, 'The Rate of Coastal Temperature Rise Adjacent to a Warming Western Boundary Current is Nonuniform with Latitude', Geophysical Research Letters, 48, http://dx.doi.org/10.1029/2020GL090751
,2020, 'Assessing the Impact of Nontraditional Ocean Observations for Prediction of the East Australian Current', Journal of Geophysical Research: Oceans, 125, http://dx.doi.org/10.1029/2020JC016580
,2020, 'The rate of coastal temperature rise adjacent to a warming western boundary current is non-uniform with latitude', , http://dx.doi.org/10.1002/essoar.10504392.2
,2020, 'Transport variability over the Hawkesbury Shelf (31.5-34.5°S) driven by the East Australian Current', PLoS ONE, 15, pp. e0241622, http://dx.doi.org/10.1371/journal.pone.0241622
,2020, 'Rate of coastal temperature rise adjacent to a warming western boundary current is non-uniform with latitude', , http://dx.doi.org/10.1002/essoar.10504392.1
,2020, 'Multiple spawning events promote increased larval dispersal of a predatory fish in a western boundary current', Fisheries Oceanography, 29, pp. 309 - 323, http://dx.doi.org/10.1111/fog.12473
,2020, 'Downstream Evolution of the East Australian Current System: Mean Flow, Seasonal, and Intra-annual Variability', Journal of Geophysical Research: Oceans, 125, http://dx.doi.org/10.1029/2019JC015227
,2020, 'An assessment of the East Australian Current as a renewable energy resource', Journal of Marine Systems, 204, http://dx.doi.org/10.1016/j.jmarsys.2019.103285
,2020, 'Predicting the submesoscale circulation inshore of the East Australian Current', Journal of Marine Systems, 204, http://dx.doi.org/10.1016/j.jmarsys.2019.103286
,2019, 'Revisiting the circulation of the East Australian Current: Its path, separation, and eddy field', Progress in Oceanography, 176, http://dx.doi.org/10.1016/j.pocean.2019.102139
,2019, 'A high-resolution biogeochemical model (ROMS 3.4+bio-Fennel) of the East Australian current system', Geoscientific Model Development, 12, pp. 441 - 456, http://dx.doi.org/10.5194/gmd-12-441-2019
,2018, 'Observation Impact in a Regional Reanalysis of the East Australian Current System', Journal of Geophysical Research: Oceans, 123, pp. 7511 - 7528, http://dx.doi.org/10.1029/2017JC013685
,2016, 'Development and evaluation of a high-resolution reanalysis of the East Australian Current region using the Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) data assimilation', Geoscientific Model Development, 9, pp. 3779 - 3801, http://dx.doi.org/10.5194/gmd-9-3779-2016
,2016, 'Quantifying the Incoherent M-2 Internal Tide in the Philippine Sea', JOURNAL OF PHYSICAL OCEANOGRAPHY, 46, pp. 2483 - 2491, http://dx.doi.org/10.1175/JPO-D-16-0023.1
,2016, 'Quantifying the incoherent M
2014, 'The impact of subtidal circulation on internal tide generation and propagation in the philippine sea', Journal of Physical Oceanography, 44, pp. 1386 - 1405, http://dx.doi.org/10.1175/JPO-D-13-0142.1
,2014, 'The impact of subtidal circulation on internal-tide-induced mixing in the Philippine Sea', Journal of Physical Oceanography, 44, pp. 3209 - 3224, http://dx.doi.org/10.1175/JPO-D-13-0249.1
,2013, 'What acoustic travel-times tell us about the ocean', The Journal of the Acoustical Society of America, 134, pp. 3982 - 3982, http://dx.doi.org/10.1121/1.4830510
,2013, 'Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements', Journal of the Acoustical Society of America, 134, pp. 3211 - 3222, http://dx.doi.org/10.1121/1.4818786
,2013, 'Effects of remote generation sites on model estimates of M