Select Publications
Journal articles
2025, 'The effect of immobilisation strategies on the ability of peptoids to reduce the adhesion of P. aeruginosa strains to contact lenses', Experimental Eye Research, 250, http://dx.doi.org/10.1016/j.exer.2024.110149
,2024, 'Composites from Self-Assembled Protein Nanofibrils and Liquid Metal Gallium', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202405918
,2024, 'Effects of Secondary Amine and Molecular Weight on the Biological Activities of Cationic Amphipathic Antimicrobial Macromolecules', Biomacromolecules, 25, pp. 6899 - 6912, http://dx.doi.org/10.1021/acs.biomac.4c01137
,2024, 'Smart Galactosidase-Responsive Antimicrobial Dendron: Towards More Biocompatible Membrane-Disruptive Agents', Macromolecular Rapid Communications, 45, http://dx.doi.org/10.1002/marc.202400350
,2024, 'Versatile cationic dual-layer hydrogel filtration system for sustainable solar steam generator', Materials Today Sustainability, 26, http://dx.doi.org/10.1016/j.mtsust.2024.100753
,2024, 'The activity of antimicrobial peptoids against multidrug-resistant ocular pathogens', Contact Lens and Anterior Eye, 47, http://dx.doi.org/10.1016/j.clae.2024.102124
,2024, 'Biomimetic Electronic Skin through Hierarchical Polymer Structural Design', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202309006
,2023, 'Nanoscale iodophoric poly(vinyl amide) coatings for the complexation and release of iodine for antimicrobial surfaces', Applied Surface Science, 641, http://dx.doi.org/10.1016/j.apsusc.2023.158422
,2023, 'Photoinduced Unveiling of Cationic Amine: Toward Smart Photoresponsive Antimicrobial Polymers', ACS Applied Polymer Materials, 5, pp. 8735 - 8743, http://dx.doi.org/10.1021/acsapm.3c01904
,2022, 'Two plus One: Combination Therapy Tri-systems Involving Two Membrane-Disrupting Antimicrobial Macromolecules and Antibiotics', ACS Infectious Diseases, 8, pp. 1480 - 1490, http://dx.doi.org/10.1021/acsinfecdis.2c00087
,2022, 'Soft Liquid Metal Infused Conductive Sponges', Advanced Materials Technologies, 7, http://dx.doi.org/10.1002/admt.202101500
,2022, 'Bioactive Synthetic Polymers', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202105063
,2021, 'Releasable antimicrobial polymer-silk coatings for combating multidrug-resistant bacteria', Polymer Chemistry, 12, pp. 7038 - 7047, http://dx.doi.org/10.1039/d1py01219c
,2021, 'Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers', Scientific Reports, 11, http://dx.doi.org/10.1038/s41598-020-79702-3
,2021, 'Photo-Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser', Angewandte Chemie - International Edition, 60, pp. 24248 - 24256, http://dx.doi.org/10.1002/anie.202110672
,2021, 'Photo‐Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser', Angewandte Chemie, 133, pp. 24450 - 24458, http://dx.doi.org/10.1002/ange.202110672
,2021, 'Effect of hydrophilic groups on the bioactivity of antimicrobial polymers', Polymer Chemistry, 12, pp. 5689 - 5703, http://dx.doi.org/10.1039/d1py01075a
,2021, 'Wet or dry multifunctional coating prepared by visible light polymerisation with fire retardant, thermal protective, and antimicrobial properties', Cellulose, 28, pp. 8821 - 8840, http://dx.doi.org/10.1007/s10570-021-04095-z
,2021, 'Fire-Resistant Flexible Polyurethane Foams via Nature-Inspired Chitosan-Expandable Graphite Coatings', ACS Applied Polymer Materials, 3, pp. 4079 - 4087, http://dx.doi.org/10.1021/acsapm.1c00580
,2021, 'Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance', ACS Infectious Diseases, 7, pp. 215 - 253, http://dx.doi.org/10.1021/acsinfecdis.0c00635
,2021, 'Silk Sponges with Surface Antimicrobial Activity', ACS Applied Bio Materials, 4, pp. 692 - 700, http://dx.doi.org/10.1021/acsabm.0c01222
,2020, 'Effect of Hydrophobic Groups on Antimicrobial and Hemolytic Activity: Developing a Predictive Tool for Ternary Antimicrobial Polymers', Biomacromolecules, 21, pp. 5241 - 5255, http://dx.doi.org/10.1021/acs.biomac.0c01320
,2020, 'High-Throughput Process for the Discovery of Antimicrobial Polymers and Their Upscaled Production via Flow Polymerization', Macromolecules, 53, pp. 631 - 639, http://dx.doi.org/10.1021/acs.macromol.9b02207
,2020, 'Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils', Biomacromolecules, 21, pp. 262 - 272, http://dx.doi.org/10.1021/acs.biomac.9b01278
,2019, 'S-Nitrosothiol Plasma-Modified Surfaces for the Prevention of Bacterial Biofilm Formation', ACS Biomaterials Science and Engineering, 5, pp. 5881 - 5887, http://dx.doi.org/10.1021/acsbiomaterials.9b01063
,2019, 'Synergy between Synthetic Antimicrobial Polymer and Antibiotics: A Promising Platform to Combat Multidrug-Resistant Bacteria', ACS Infectious Diseases, 5, pp. 1357 - 1365, http://dx.doi.org/10.1021/acsinfecdis.9b00049
,2019, 'High-Throughput Synthesis of Antimicrobial Copolymers and Rapid Evaluation of Their Bioactivity', Macromolecules, 52, pp. 3975 - 3986, http://dx.doi.org/10.1021/acs.macromol.9b00290
,2019, 'Antibiofilm Nitric Oxide-Releasing Polydopamine Coatings', ACS Applied Materials and Interfaces, 11, pp. 7320 - 7329, http://dx.doi.org/10.1021/acsami.8b16853
,2018, 'Highly Bactericidal Macroporous Antimicrobial Polymeric Gel for Point-of-Use Water Disinfection', Scientific Reports, 8, pp. 7965, http://dx.doi.org/10.1038/s41598-018-26202-0
,2018, 'Exploiting the Versatility of Polydopamine-Coated Nanoparticles to Deliver Nitric Oxide and Combat Bacterial Biofilm', Macromolecular Rapid Communications, 39, pp. e1800159, http://dx.doi.org/10.1002/marc.201800159
,2018, 'Nitric Oxide-Loaded Antimicrobial Polymer for the Synergistic Eradication of Bacterial Biofilm', ACS Macro Letters, 7, pp. 592 - 597, http://dx.doi.org/10.1021/acsmacrolett.8b00190
,2018, 'Towards Sequence-Controlled Antimicrobial Polymers: Effect of Polymer Block Order on Antimicrobial Activity', Angewandte Chemie - International Edition, 57, pp. 4559 - 4564, http://dx.doi.org/10.1002/anie.201713036
,2018, 'Towards Sequence‐Controlled Antimicrobial Polymers: Effect of Polymer Block Order on Antimicrobial Activity', Angewandte Chemie, 130, pp. 4649 - 4654, http://dx.doi.org/10.1002/ange.201713036
,2018, 'The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers', Polymer Chemistry, 9, pp. 1735 - 1744, http://dx.doi.org/10.1039/c7py01069a
,2018, 'Antimicrobial polymeric nanoparticles', Progress in Polymer Science, 76, pp. 40 - 64, http://dx.doi.org/10.1016/j.progpolymsci.2017.07.007
,2018, 'Recent advances in nitric oxide delivery for antimicrobial applications using polymer-based systems', Journal of Materials Chemistry B, 6, pp. 2945 - 2959, http://dx.doi.org/10.1039/c8tb00299a
,2018, 'Correction: The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers', Polymer Chemistry, 9, pp. 1745 - 1745, http://dx.doi.org/10.1039/c7py90140b
,2017, 'Tuning the Properties of Polymer Capsules for Cellular Interactions', Bioconjugate Chemistry, 28, pp. 1859 - 1866, http://dx.doi.org/10.1021/acs.bioconjchem.7b00168
,2017, 'Rational Design of Single-Chain Polymeric Nanoparticles That Kill Planktonic and Biofilm Bacteria', ACS Infectious Diseases, 3, pp. 237 - 248, http://dx.doi.org/10.1021/acsinfecdis.6b00203
,2017, 'Antifogging Surface Facilitated by Nanoscale Coatings with Controllable Hydrophobicity and Cross-Linking Density', Macromolecular Materials and Engineering, 302, http://dx.doi.org/10.1002/mame.201600199
,2016, 'Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles', ACS Applied Materials and Interfaces, 8, pp. 33446 - 33456, http://dx.doi.org/10.1021/acsami.6b11402
,2016, 'Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers', Nature Microbiology, 1, http://dx.doi.org/10.1038/nmicrobiol.2016.162
,2016, 'Star Polymers', Chemical Reviews, 116, pp. 6743 - 6836, http://dx.doi.org/10.1021/acs.chemrev.6b00008
,2016, 'Spatial-controlled nanoengineered films prepared: Via rapid catalyst induced cross-linking', Polymer Chemistry, 7, pp. 3251 - 3258, http://dx.doi.org/10.1039/c6py00530f
,2016, 'Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers', Biomacromolecules, 17, pp. 1170 - 1178, http://dx.doi.org/10.1021/acs.biomac.5b01766
,2016, 'Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles', ACS Applied Materials and Interfaces, 8, pp. 6219 - 6228, http://dx.doi.org/10.1021/acsami.5b11186
,2016, 'Stereoregular High-Density Bottlebrush Polymer and Its Organic Nanocrystal Stereocomplex through Triple-Helix Formation', Macromolecules, 49, pp. 788 - 795, http://dx.doi.org/10.1021/acs.macromol.5b02295
,2016, 'Fullerene peapod nanoparticles as an organic semiconductor-electrode interface layer', Chemical Communications, 52, pp. 3356 - 3359, http://dx.doi.org/10.1039/c5cc10444k
,2016, 'Synthesis of high-order multiblock core cross-linked star polymers', Journal of Polymer Science, Part A: Polymer Chemistry, 54, pp. 135 - 143, http://dx.doi.org/10.1002/pola.27775
,2015, 'Structure Governs the Deformability of Polymer Particles in a Microfluidic Blood Capillary Model', ACS Macro Letters, 4, pp. 1205 - 1209, http://dx.doi.org/10.1021/acsmacrolett.5b00591
,