Select Publications
Journal articles
2024, 'Smart Galactosidase-Responsive Antimicrobial Dendron: Towards More Biocompatible Membrane-Disruptive Agents', Macromolecular Rapid Communications, 45, http://dx.doi.org/10.1002/marc.202400350
,2024, 'Effects of Secondary Amine and Molecular Weight on the Biological Activities of Cationic Amphipathic Antimicrobial Macromolecules.', Biomacromolecules, http://dx.doi.org/10.1021/acs.biomac.4c01137
,2024, 'Versatile cationic dual-layer hydrogel filtration system for sustainable solar steam generator', Materials Today Sustainability, 26, http://dx.doi.org/10.1016/j.mtsust.2024.100753
,2024, 'The activity of antimicrobial peptoids against multidrug-resistant ocular pathogens', Contact Lens and Anterior Eye, 47, http://dx.doi.org/10.1016/j.clae.2024.102124
,2024, 'Biomimetic Electronic Skin through Hierarchical Polymer Structural Design', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202309006
,2024, 'Composites from Self-Assembled Protein Nanofibrils and Liquid Metal Gallium', Advanced Functional Materials, http://dx.doi.org/10.1002/adfm.202405918
,2023, 'Nanoscale iodophoric poly(vinyl amide) coatings for the complexation and release of iodine for antimicrobial surfaces', Applied Surface Science, 641, http://dx.doi.org/10.1016/j.apsusc.2023.158422
,2023, 'Photoinduced Unveiling of Cationic Amine: Toward Smart Photoresponsive Antimicrobial Polymers', ACS Applied Polymer Materials, 5, pp. 8735 - 8743, http://dx.doi.org/10.1021/acsapm.3c01904
,2022, 'Two plus One: Combination Therapy Tri-systems Involving Two Membrane-Disrupting Antimicrobial Macromolecules and Antibiotics', ACS Infectious Diseases, 8, pp. 1480 - 1490, http://dx.doi.org/10.1021/acsinfecdis.2c00087
,2022, 'Soft Liquid Metal Infused Conductive Sponges', Advanced Materials Technologies, 7, http://dx.doi.org/10.1002/admt.202101500
,2022, 'Bioactive Synthetic Polymers', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202105063
,2021, 'Releasable antimicrobial polymer-silk coatings for combating multidrug-resistant bacteria', Polymer Chemistry, 12, pp. 7038 - 7047, http://dx.doi.org/10.1039/d1py01219c
,2021, 'Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers', Scientific Reports, 11, http://dx.doi.org/10.1038/s41598-020-79702-3
,2021, 'Photo-Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser', Angewandte Chemie - International Edition, 60, pp. 24248 - 24256, http://dx.doi.org/10.1002/anie.202110672
,2021, 'Photo‐Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser', Angewandte Chemie, 133, pp. 24450 - 24458, http://dx.doi.org/10.1002/ange.202110672
,2021, 'Effect of hydrophilic groups on the bioactivity of antimicrobial polymers', Polymer Chemistry, 12, pp. 5689 - 5703, http://dx.doi.org/10.1039/d1py01075a
,2021, 'Wet or dry multifunctional coating prepared by visible light polymerisation with fire retardant, thermal protective, and antimicrobial properties', Cellulose, 28, pp. 8821 - 8840, http://dx.doi.org/10.1007/s10570-021-04095-z
,2021, 'Fire-Resistant Flexible Polyurethane Foams via Nature-Inspired Chitosan-Expandable Graphite Coatings', ACS Applied Polymer Materials, 3, pp. 4079 - 4087, http://dx.doi.org/10.1021/acsapm.1c00580
,2021, 'Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance', ACS Infectious Diseases, 7, pp. 215 - 253, http://dx.doi.org/10.1021/acsinfecdis.0c00635
,2021, 'Silk Sponges with Surface Antimicrobial Activity', ACS Applied Bio Materials, 4, pp. 692 - 700, http://dx.doi.org/10.1021/acsabm.0c01222
,2020, 'Effect of Hydrophobic Groups on Antimicrobial and Hemolytic Activity: Developing a Predictive Tool for Ternary Antimicrobial Polymers', Biomacromolecules, 21, pp. 5241 - 5255, http://dx.doi.org/10.1021/acs.biomac.0c01320
,2020, 'High-Throughput Process for the Discovery of Antimicrobial Polymers and Their Upscaled Production via Flow Polymerization', Macromolecules, 53, pp. 631 - 639, http://dx.doi.org/10.1021/acs.macromol.9b02207
,2020, 'Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils', Biomacromolecules, 21, pp. 262 - 272, http://dx.doi.org/10.1021/acs.biomac.9b01278
,2019, 'S-Nitrosothiol Plasma-Modified Surfaces for the Prevention of Bacterial Biofilm Formation', ACS Biomaterials Science and Engineering, 5, pp. 5881 - 5887, http://dx.doi.org/10.1021/acsbiomaterials.9b01063
,2019, 'Synergy between Synthetic Antimicrobial Polymer and Antibiotics: A Promising Platform to Combat Multidrug-Resistant Bacteria', ACS Infectious Diseases, 5, pp. 1357 - 1365, http://dx.doi.org/10.1021/acsinfecdis.9b00049
,2019, 'High-Throughput Synthesis of Antimicrobial Copolymers and Rapid Evaluation of Their Bioactivity', Macromolecules, 52, pp. 3975 - 3986, http://dx.doi.org/10.1021/acs.macromol.9b00290
,2019, 'Antibiofilm Nitric Oxide-Releasing Polydopamine Coatings', ACS Applied Materials and Interfaces, 11, pp. 7320 - 7329, http://dx.doi.org/10.1021/acsami.8b16853
,2018, 'Highly Bactericidal Macroporous Antimicrobial Polymeric Gel for Point-of-Use Water Disinfection', Scientific Reports, 8, pp. 7965, http://dx.doi.org/10.1038/s41598-018-26202-0
,2018, 'Exploiting the Versatility of Polydopamine-Coated Nanoparticles to Deliver Nitric Oxide and Combat Bacterial Biofilm', Macromolecular Rapid Communications, 39, pp. e1800159, http://dx.doi.org/10.1002/marc.201800159
,2018, 'Nitric Oxide-Loaded Antimicrobial Polymer for the Synergistic Eradication of Bacterial Biofilm', ACS Macro Letters, 7, pp. 592 - 597, http://dx.doi.org/10.1021/acsmacrolett.8b00190
,2018, 'Towards Sequence-Controlled Antimicrobial Polymers: Effect of Polymer Block Order on Antimicrobial Activity', Angewandte Chemie - International Edition, 57, pp. 4559 - 4564, http://dx.doi.org/10.1002/anie.201713036
,2018, 'Towards Sequence‐Controlled Antimicrobial Polymers: Effect of Polymer Block Order on Antimicrobial Activity', Angewandte Chemie, 130, pp. 4649 - 4654, http://dx.doi.org/10.1002/ange.201713036
,2018, 'The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers', Polymer Chemistry, 9, pp. 1735 - 1744, http://dx.doi.org/10.1039/c7py01069a
,2018, 'Antimicrobial polymeric nanoparticles', Progress in Polymer Science, 76, pp. 40 - 64, http://dx.doi.org/10.1016/j.progpolymsci.2017.07.007
,2018, 'Recent advances in nitric oxide delivery for antimicrobial applications using polymer-based systems', Journal of Materials Chemistry B, 6, pp. 2945 - 2959, http://dx.doi.org/10.1039/c8tb00299a
,2018, 'Correction: The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers', Polymer Chemistry, 9, pp. 1745 - 1745, http://dx.doi.org/10.1039/c7py90140b
,2017, 'Tuning the Properties of Polymer Capsules for Cellular Interactions', Bioconjugate Chemistry, 28, pp. 1859 - 1866, http://dx.doi.org/10.1021/acs.bioconjchem.7b00168
,2017, 'Rational Design of Single-Chain Polymeric Nanoparticles That Kill Planktonic and Biofilm Bacteria', ACS Infectious Diseases, 3, pp. 237 - 248, http://dx.doi.org/10.1021/acsinfecdis.6b00203
,2017, 'Antifogging Surface Facilitated by Nanoscale Coatings with Controllable Hydrophobicity and Cross-Linking Density', Macromolecular Materials and Engineering, 302, http://dx.doi.org/10.1002/mame.201600199
,2016, 'Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles', ACS Applied Materials and Interfaces, 8, pp. 33446 - 33456, http://dx.doi.org/10.1021/acsami.6b11402
,2016, 'Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers', Nature Microbiology, 1, http://dx.doi.org/10.1038/nmicrobiol.2016.162
,2016, 'Star Polymers', Chemical Reviews, 116, pp. 6743 - 6836, http://dx.doi.org/10.1021/acs.chemrev.6b00008
,2016, 'Spatial-controlled nanoengineered films prepared: Via rapid catalyst induced cross-linking', Polymer Chemistry, 7, pp. 3251 - 3258, http://dx.doi.org/10.1039/c6py00530f
,2016, 'Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers', Biomacromolecules, 17, pp. 1170 - 1178, http://dx.doi.org/10.1021/acs.biomac.5b01766
,2016, 'Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles', ACS Applied Materials and Interfaces, 8, pp. 6219 - 6228, http://dx.doi.org/10.1021/acsami.5b11186
,2016, 'Stereoregular High-Density Bottlebrush Polymer and Its Organic Nanocrystal Stereocomplex through Triple-Helix Formation', Macromolecules, 49, pp. 788 - 795, http://dx.doi.org/10.1021/acs.macromol.5b02295
,2016, 'Fullerene peapod nanoparticles as an organic semiconductor-electrode interface layer', Chemical Communications, 52, pp. 3356 - 3359, http://dx.doi.org/10.1039/c5cc10444k
,2016, 'Synthesis of high-order multiblock core cross-linked star polymers', Journal of Polymer Science, Part A: Polymer Chemistry, 54, pp. 135 - 143, http://dx.doi.org/10.1002/pola.27775
,2015, 'Structure Governs the Deformability of Polymer Particles in a Microfluidic Blood Capillary Model', ACS Macro Letters, 4, pp. 1205 - 1209, http://dx.doi.org/10.1021/acsmacrolett.5b00591
,2015, 'Controlled Formation of Star Polymer Nanoparticles via Visible Light Photopolymerization', ACS Macro Letters, 4, pp. 1012 - 1016, http://dx.doi.org/10.1021/acsmacrolett.5b00530
,