Select Publications
Journal articles
2024, 'Bounds to electron spin qubit variability for scalable CMOS architectures', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-48557-x
,2024, 'Entangling gates on degenerate spin qubits dressed by a global field', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52010-4
,2024, 'Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits.', Nat Commun, 15, pp. 8415, http://dx.doi.org/10.1038/s41467-024-52795-4
,2024, 'Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays', Physical Review B, 110, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2024, 'High-fidelity spin qubit operation and algorithmic initialization above 1 K', Nature, 627, pp. 772 - 777, http://dx.doi.org/10.1038/s41586-024-07160-2
,2024, 'Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis', Applied Physics Letters, 124, http://dx.doi.org/10.1063/5.0179958
,2024, 'Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots', Nature Physics, http://dx.doi.org/10.1038/s41567-024-02614-w
,2023, 'High-fidelity control of a nitrogen-vacancy-center spin qubit at room temperature using the sinusoidally modulated, always rotating, and tailored protocol', Physical Review A, 108, http://dx.doi.org/10.1103/PhysRevA.108.022606
,2023, 'Accessing the full capabilities of filter functions: Tool for detailed noise and quantum control susceptibility analysis', Physical Review A, 108, http://dx.doi.org/10.1103/PhysRevA.108.012426
,2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202208557
,2023, 'Control of dephasing in spin qubits during coherent transport in silicon', Physical Review B, 107, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2023, 'On-demand electrical control of spin qubits', Nature Nanotechnology, 18, pp. 131 - 136, http://dx.doi.org/10.1038/s41565-022-01280-4
,2022, 'Coherent control of electron spin qubits in silicon using a global field', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00645-w
,2022, 'Implementation of an advanced dressing protocol for global qubit control in silicon', Applied Physics Reviews, 9, http://dx.doi.org/10.1063/5.0096467
,2022, 'Fast Bayesian Tomography of a Two-Qubit Gate Set in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.024068
,2022, 'Development of an Undergraduate Quantum Engineering Degree', IEEE Transactions on Quantum Engineering, 3, http://dx.doi.org/10.1109/TQE.2022.3157338
,2022, 'Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202105488
,2021, 'Quantum computation protocol for dressed spins in a global field', Physical Review B, 104, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, 'Bell-state tomography in a silicon many-electron artificial molecule', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-021-23437-w
,2021, 'Coherent spin qubit transport in silicon', Nature Communications, 12, pp. 4114, http://dx.doi.org/10.1038/s41467-021-24371-7
,2021, 'Pulse engineering of a global field for robust and universal quantum computation', Physical Review A, 104, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, 'Single-electron spin resonance in a nanoelectronic device using a global field', Science Advances, 7, http://dx.doi.org/10.1126/sciadv.abg9158
,2021, 'A High-Sensitivity Charge Sensor for Silicon Qubits above 1 K', Nano Letters, 21, pp. 6328 - 6335, http://dx.doi.org/10.1021/acs.nanolett.1c01003
,2021, 'Roadmap on quantum nanotechnologies', Nanotechnology, 32, http://dx.doi.org/10.1088/1361-6528/abb333
,2021, 'Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon', Nano Letters, 21, pp. 1517 - 1522, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2021, 'Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control', PRX Quantum, 2, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2020, 'Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-019-14053-w
,2020, 'Single-electron operation of a silicon-CMOS 2 × 2 quantum dot array with integrated charge sensing', Nano Letters, 20, pp. 7882 - 7888, http://dx.doi.org/10.1021/acs.nanolett.0c02397
,2020, 'Operation of a silicon quantum processor unit cell above one kelvin', Nature, 580, pp. 350 - 354, http://dx.doi.org/10.1038/s41586-020-2171-6
,2020, 'A silicon quantum-dot-coupled nuclear spin qubit', Nature Nanotechnology, 15, pp. 13 - 17, http://dx.doi.org/10.1038/s41565-019-0587-7
,2019, 'Single-spin qubits in isotopically enriched silicon at low magnetic field', Nature Communications, 10, http://dx.doi.org/10.1038/s41467-019-13416-7
,2019, 'Fidelity benchmarks for two-qubit gates in silicon', Nature, 569, pp. 532 - 536, http://dx.doi.org/10.1038/s41586-019-1197-0
,2019, 'Geometric formalism for constructing arbitrary single-qubit dynamically corrected gates', Physical Review A, 99, http://dx.doi.org/10.1103/PhysRevA.99.052321
,2019, 'Controlling Spin-Orbit Interactions in Silicon Quantum Dots Using Magnetic Field Direction', Physical Review X, 9, http://dx.doi.org/10.1103/PhysRevX.9.021028
,2019, 'Gate-based single-shot readout of spins in silicon', Nature Nanotechnology, 14, pp. 437 - 441, http://dx.doi.org/10.1038/s41565-019-0400-7
,2019, 'High-fidelity and robust two-qubit gates for quantum-dot spin qubits in silicon', Physical Review A, 99, http://dx.doi.org/10.1103/PhysRevA.99.042310
,2019, 'Silicon qubit fidelities approaching incoherent noise limits via pulse engineering', Nature Electronics, 2, pp. 151 - 158, http://dx.doi.org/10.1038/s41928-019-0234-1
,2018, 'Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout', Nature Communications, 9, http://dx.doi.org/10.1038/s41467-018-06039-x
,2018, 'Spin and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot', Nature Communications, 9, http://dx.doi.org/10.1038/s41467-018-05700-9
,2018, 'Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy', Physical Review Applied, 10, http://dx.doi.org/10.1103/PhysRevApplied.10.044017
,2018, 'Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability', Physical Review B, 97, http://dx.doi.org/10.1103/PhysRevB.97.241401
,2017, 'Silicon CMOS architecture for a spin-based quantum computer', Nature Communications, 8, http://dx.doi.org/10.1038/s41467-017-01905-6
,2017, 'Impact of g -factors and valleys on spin qubits in a silicon double quantum dot', Physical Review B, 96, http://dx.doi.org/10.1103/PhysRevB.96.045302
,2016, 'Valley splitting of single-electron Si MOS quantum dots', Applied Physics Letters, 109, http://dx.doi.org/10.1063/1.4972514
,2015, 'Spin-orbit coupling and operation of multivalley spin qubits', Physical Review B - Condensed Matter and Materials Physics, 92, http://dx.doi.org/10.1103/PhysRevB.92.201401
,2015, 'A two-qubit logic gate in silicon', Nature, 526, pp. 410 - 414, http://dx.doi.org/10.1038/nature15263
,2015, 'Nonexponential fidelity decay in randomized benchmarking with low-frequency noise', Physical Review A - Atomic, Molecular, and Optical Physics, 92, http://dx.doi.org/10.1103/PhysRevA.92.022326
,2014, 'Charge state hysteresis in semiconductor quantum dots', Applied Physics Letters, 105, http://dx.doi.org/10.1063/1.4901218
,2014, 'Charge offset stability in Si single electron devices with Al gates', Nanotechnology, 25, http://dx.doi.org/10.1088/0957-4484/25/40/405201
,2014, 'An addressable quantum dot qubit with fault-tolerant control-fidelity', Nature Nanotechnology, 9, pp. 981 - 985, http://dx.doi.org/10.1038/nnano.2014.216
,