ORCID as entered in ROS
![orcid_icon](/themes/resgate8/images/icons/ORCIDiD_icon24x24.png)
Select Publications
Xu C; Wang CH; Peng S; Zhao L, 2025, 'Integrating synchronized charge extraction circuit with monostable and bistable metastructures for simultaneously enhanced vibration suppression and energy harvesting', Mechanical Systems and Signal Processing, 225, http://dx.doi.org/10.1016/j.ymssp.2024.112286
Chen S; Xu C; Zhao L, 2024, 'Aeroelastic Metastructure for simultaneously suppressing wind-induced vibration and energy harvesting under wind flows and base excitations', Smart Materials and Structures, 33, pp. 035034, http://dx.doi.org/10.1088/1361-665X/ad254d
Xu C; Yang Y; Wang C; Zhao L, 2024, 'Simultaneous Low-Frequency Vibration Suppression and Energy Harvesting using a Metastructure with Alternately Combined Nonlinear Local Resonators', Mechanical Systems and Signal Processing, 211, pp. 111241 - 111241, http://dx.doi.org/10.1016/j.ymssp.2024.111241
Xu C; Chen S; Wang CH; Yang Y; Zhao L, 2023, 'Amplitude-robust metastructure with combined bistable and monostable mechanisms for simultaneously enhanced vibration suppression and energy harvesting', Applied Physics Letters, 122, pp. 151701, http://dx.doi.org/10.1063/5.0136134
Li G; Wu S; Sha Z; Zhao L; Chu D; Wang CH; Peng S, 2023, 'A triboelectric nanogenerator powered piezoresistive strain sensing technique insensitive to output variations', Nano Energy, 108, pp. 108185, http://dx.doi.org/10.1016/j.nanoen.2023.108185
Chen S; Wang CH; Zhao L, 2023, 'A two-degree-of-freedom aeroelastic energy harvesting system with coupled vortex-induced-vibration and wake galloping mechanisms', Applied Physics Letters, 122, pp. 063901, http://dx.doi.org/10.1063/5.0128616
Chen S; Zhao L, 2023, 'A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting', Applied Energy, 331, pp. 120423, http://dx.doi.org/10.1016/j.apenergy.2022.120423
Wang J; Zhao L, 2022, 'Toward Nonlinear Galloping Energy Harvesting Interfaced With Different Power Extraction Circuits', IEEE/ASME Transactions on Mechatronics, 27, pp. 2678 - 2689, http://dx.doi.org/10.1109/TMECH.2021.3121881
Hu G; Lan C; Liang J; Tang L; Zhao L, 2022, 'Theoretical Study of a Two-Degree-of-Freedom Piezoelectric Energy Harvester under Concurrent Aeroelastic and Base Excitation', Journal of Intelligent Material Systems and Structures, 33, pp. 2000 - 2016, http://dx.doi.org/10.1177/1045389X211072520
Xu C; Zhao L, 2022, 'Investigation on the Characteristics of a Novel Internal Resonance Galloping Oscillator for Concurrent Aeroelastic and Base Vibratory Energy Harvesting', Mechanical Systems and Signal Processing, 173, pp. 109022 - 109022, http://dx.doi.org/10.1016/j.ymssp.2022.109022
Chen S; Eager D; Zhao L, 2022, 'Enhanced frequency synchronization for concurrent aeroelastic and base vibratory energy harvesting using a softening nonlinear galloping energy harvester', Journal of Intelligent Material Systems and Structures, 33, pp. 687 - 702, http://dx.doi.org/10.1177/1045389X211026381
Wang J; Yurchenko D; Hu G; Zhao L; Tang L; Yang Y, 2021, 'Perspectives in flow-induced vibration energy harvesting', Applied Physics Letters, 119, http://dx.doi.org/10.1063/5.0063488
Hu G; Wang J; Qiao H; Zhao L; Li Z; Tang L, 2021, 'An experimental study of a two-degree-of-freedom galloping energy harvester', International Journal of Energy Research, 45, pp. 3365 - 3374, http://dx.doi.org/10.1002/er.5878
Zhao C; Yang Y; Upadrashta D; Zhao L, 2021, 'Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester', Energy, 214, http://dx.doi.org/10.1016/j.energy.2020.118885
Ren F; Ji J; Luo G; Zhao S; Zhao L; Shi G; Wu X; Wang N, 2021, 'Investigation of Dynamic Load Sharing Behavior for Herringbone Planetary Gears considering Multicoupling Manufacturing Errors', Shock and Vibration, 2021, http://dx.doi.org/10.1155/2021/5511817
Zhang R; Zhao L; Qiu X; Zhang H; Wang X, 2020, 'A comprehensive comparison of the vehicle vibration energy harvesting abilities of the regenerative shock absorbers predicted by the quarter, half and full vehicle suspension system models', Applied Energy, 272, http://dx.doi.org/10.1016/j.apenergy.2020.115180
Wang J; Geng L; Yang K; Zhao L; Wang F; Yurchenko D, 2020, 'Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration', Nonlinear Dynamics, 100, pp. 1963 - 1983, http://dx.doi.org/10.1007/s11071-020-05633-3
Wang J; Tang L; Zhao L; Hu G; Song R; Xu K, 2020, 'Equivalent circuit representation of a vortex-induced vibration-based energy harvester using a semi-empirical lumped parameter approach', International Journal of Energy Research, 44, pp. 4516 - 4528, http://dx.doi.org/10.1002/er.5228
Tan Q; Fan K; Tao K; Zhao L; Cai M, 2020, 'A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations', Energy, 196, http://dx.doi.org/10.1016/j.energy.2020.117107
Zhao L, 2020, 'Synchronization extension using a bistable galloping oscillator for enhanced power generation from concurrent wind and base vibration', Applied Physics Letters, 116, http://dx.doi.org/10.1063/1.5134948
Wang J; Hu G; Su Z; Li G; Zhao W; Tang L; Zhao L, 2019, 'A cross-coupled dual-beam for multi-directional energy harvesting from vortex induced vibrations', Smart Materials and Structures, 28, http://dx.doi.org/10.1088/1361-665X/ab5249
Wang H; Zhao L; Tang L, 2019, 'Effects of Electrical and Electromechanical Parameters on Performance of Galloping-Based Wind Energy Harvester with Piezoelectric and Electromagnetic Transductions', Vibration, 2, pp. 222 - 239, http://dx.doi.org/10.3390/vibration2020014
Wang J; Tang L; Zhao L; Zhang Z, 2019, 'Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies', Energy, 172, pp. 1066 - 1078, http://dx.doi.org/10.1016/j.energy.2019.02.002
Zhao L; Yang Y, 2018, 'An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting', Applied Energy, 212, pp. 233 - 243, http://dx.doi.org/10.1016/j.apenergy.2017.12.042
Li F; Yang Y; Chi Z; Zhao L; Yang Y; Luo J, 2018, 'Trinity: Enabling self-Sustaining WSNs indoors with energy-Free sensing and networking', ACM Transactions on Embedded Computing Systems, 17, http://dx.doi.org/10.1145/3173039
Zhao L; Yang Y, 2017, 'Comparison of four electrical interfacing circuits in wind energy harvesting', Sensors and Actuators, A: Physical, 261, pp. 117 - 129, http://dx.doi.org/10.1016/j.sna.2017.04.035
Zhao L; Tang L; Liang J; Yang Y, 2017, 'Synergy of Wind Energy Harvesting and Synchronized Switch Harvesting Interface Circuit', IEEE/ASME Transactions on Mechatronics, 22, pp. 1093 - 1103, http://dx.doi.org/10.1109/TMECH.2016.2630732
Zhao L; Yang Y, 2017, 'On the modeling methods of small-scale piezoelectric wind energy harvesting', Smart Structures and Systems, 19, pp. 67 - 90, http://dx.doi.org/10.12989/sss.2017.19.1.067
Zhao L; Yang Y, 2017, 'Toward Small-Scale Wind Energy Harvesting: Design, Enhancement, Performance Comparison, and Applicability', Shock and Vibration, 2017, http://dx.doi.org/10.1155/2017/3585972
Zhao L; Tang L; Yang Y, 2016, 'Synchronized charge extraction in galloping piezoelectric energy harvesting', Journal of Intelligent Material Systems and Structures, 27, pp. 453 - 468, http://dx.doi.org/10.1177/1045389X15571384
Zhao L; Yang Y, 2015, 'Analytical solutions for galloping-based piezoelectric energy harvesters with various interfacing circuits', Smart Materials and Structures, 24, http://dx.doi.org/10.1088/0964-1726/24/7/075023
Tang L; Zhao L; Yang Y; Lefeuvre E, 2015, 'Equivalent circuit representation and analysis of galloping-based wind energy harvesting', IEEE/ASME Transactions on Mechatronics, 20, pp. 834 - 844, http://dx.doi.org/10.1109/TMECH.2014.2308182
Zhao L; Yang Y, 2015, 'Enhanced aeroelastic energy harvesting with a beam stiffener', Smart Materials and Structures, 24, http://dx.doi.org/10.1088/0964-1726/24/3/032001
Zhao L; Tang L; Yang Y, 2014, 'Enhanced piezoelectric galloping energy harvesting using 2 degree-of-freedom cut-out cantilever with magnetic interaction', Japanese Journal of Applied Physics, 53, http://dx.doi.org/10.7567/JJAP.53.060302
Zhao L; Tang L; Yang Y, 2013, 'Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester', Smart Materials and Structures, 22, http://dx.doi.org/10.1088/0964-1726/22/12/125003
Yang Y; Zhao L; Tang L, 2013, 'Comparative study of tip cross-sections for efficient galloping energy harvesting', Applied Physics Letters, 102, http://dx.doi.org/10.1063/1.4792737
Chen S; Zhao L, 2024, 'Enhancing Aeroelastic Wind Energy Harvesting Using Quasi-Zero Stiffness', Springer Nature Switzerland, pp. 239 - 248, http://dx.doi.org/10.1007/978-3-031-50635-2_23
Xu C; Zhao L, 2023, 'Metamaterial beam with bistable and monostable-hardening attachments for broad-band vibration attenuation and energy harvesting', in Lecture Notes in Electrical Engineering, Springer Nature, Hong Kong, pp. ICANDVC2023149 - ICANDVC2023149, presented at International Conference on Applied Nonlinear Dynamics, Vibration and Control (ICANDVC2023), Hong Kong, 04 December 2023 - 06 December 2023, http://dx.doi.org/10.1007/978-981-97-0554-2_43
Xu C; Zhao L, 2022, 'Internal resonance in galloping, VIV and flutter for concurrent wind and base vibration energy harvesting', in Han J-H; Shahab S; Yang J (eds.), Proceedings of SPIE - The International Society for Optical Engineering, SPIE, the international society for optics and photonics, pp. 120430p-120430p-11, presented at Active and Passive Smart Structures and Integrated Systems XVI, 06 March 2022 - 11 April 2022, http://dx.doi.org/10.1117/12.2611733
Singh M; Zhao L, 2022, 'Inerter-enhanced piezoelectric energy harvesting and vibration suppression', in Proceedings of SPIE - The International Society for Optical Engineering, http://dx.doi.org/10.1117/12.2613326
Xu C; Zhao L, 2021, 'A 2DOF galloping oscillator with internal resonance for broadband concurrent wind and base vibration energy harvesting', in Han JH; Wang G; Shahab S (eds.), Proceedings of SPIE - The International Society for Optical Engineering, SPIE, the international society for optics and photonics, ELECTR NETWORK, pp. 41, presented at Active and Passive Smart Structures and Integrated Systems XV, ELECTR NETWORK, 22 March 2021 - 26 March 2021, http://dx.doi.org/10.1117/12.2585151
Zhao L, 2020, 'A bistable galloping energy harvester for enhanced concurrent wind and base vibration energy harvesting', in Proceedings of SPIE - The International Society for Optical Engineering, http://dx.doi.org/10.1117/12.2558465
Zhao L, 2019, 'Concurrent wind and base vibration energy harvesting with a broadband bistable aeroelastic energy harvester', in IOP Conference Series: Materials Science and Engineering, http://dx.doi.org/10.1088/1757-899X/531/1/012081
Zhao L, 2019, 'Analytical solutions for a broadband concurrent aeroelastic and base vibratory energy harvester', in Proceedings of SPIE - The International Society for Optical Engineering, http://dx.doi.org/10.1117/12.2522088
Zhao L, 2018, 'Performance enhancement of an aeroelastic energy harvester for efficient power harvesting from concurrent wind flows and base vibrations', in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 780 - 785, http://dx.doi.org/10.1109/AIM.2018.8452411
Zhao L; Liang J; Tang L; Yang Y; Liu H, 2015, 'Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits', in Proceedings of SPIE - The International Society for Optical Engineering, http://dx.doi.org/10.1117/12.2084000
Avvari PV; Yang Y; Soh CK; Zhao L, 2014, 'Bandwidth enhancement of a piezoelectric energy harvester using parametrically induced vibrations', in ICAST 2014 - 25th International Conference on Adaptive Structures and Technologies
Zhao L; Chong J; Ng TLJ; Yang Y, 2014, 'Enhancement of aeroelastic energy harvesting from galloping, vortex-induced vibrations and flutter with a beam stiffener', in ICAST 2014 - 25th International Conference on Adaptive Structures and Technologies
Zhao L; Tang L; Wu H; Yang Y, 2014, 'Synchronized charge extraction for aeroelastic energy harvesting', in Proceedings of SPIE - The International Society for Optical Engineering, http://dx.doi.org/10.1117/12.2044993
Li F; Xiang T; Chi Z; Luo J; Tang L; Zhao L; Yang Y, 2013, 'Demo abstract: Powering indoor sensing with airflows- A trinity of energy harvesting, synchronous duty-cycling, and sensing', in SenSys 2013 - Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, http://dx.doi.org/10.1145/2517351.2517393