Select Publications
Journal articles
2023, 'InAs-Al hybrid devices passing the topological gap protocol', Physical Review B, 107, http://dx.doi.org/10.1103/PhysRevB.107.245423
,2023, 'Spin-relaxation mechanisms in InAs quantum well heterostructures', Applied Physics Letters, 122, http://dx.doi.org/10.1063/5.0135297
,2022, 'Atomic-Scale Characterization of Planar Selective-Area-Grown InAs/InGaAs Nanowires', ACS Applied Materials and Interfaces, 14, pp. 47981 - 47990, http://dx.doi.org/10.1021/acsami.2c09594
,2022, 'Retraction Note: Epitaxy of advanced nanowire quantum devices (Nature, (2017), 548, 7668, (434-438), 10.1038/nature23468)', Nature, 604, pp. 786, http://dx.doi.org/10.1038/s41586-022-04704-2
,2021, 'Evaluation of synthetic and experimental training data in supervised machine learning applied to charge-state detection of quantum dots', Machine Learning: Science and Technology, 2, http://dx.doi.org/10.1088/2632-2153/ac104c
,2020, 'Highly transparent gatable superconducting shadow junctions', ACS Nano, 14, pp. 14605 - 14615, http://dx.doi.org/10.1021/acsnano.0c02979
,2020, 'Dispersive Readout of Majorana Qubits', PRX Quantum, 1, http://dx.doi.org/10.1103/PRXQuantum.1.020313
,2020, 'Repairing the surface of InAs-based topological heterostructures', Journal of Applied Physics, 128, http://dx.doi.org/10.1063/5.0014361
,2020, 'Autonomous Tuning and Charge-State Detection of Gate-Defined Quantum Dots', Physical Review Applied, 13, http://dx.doi.org/10.1103/PhysRevApplied.13.054005
,2020, 'Characterizing Quantum Devices at Scale with Custom Cryo-CMOS', Physical Review Applied, 13, http://dx.doi.org/10.1103/PhysRevApplied.13.054072
,2019, 'Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments', Physical Review Applied, 11, http://dx.doi.org/10.1103/PhysRevApplied.11.064053
,2018, 'Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions', Nature Communications, 9, http://dx.doi.org/10.1038/s41467-018-07124-x
,2017, 'Conductance through a helical state in an Indium antimonide nanowire', Nature Communications, 8, http://dx.doi.org/10.1038/s41467-017-00315-y
,2017, 'Epitaxy of advanced nanowire quantum devices', Nature, 548, pp. 434 - 438, http://dx.doi.org/10.1038/nature23468
,2017, 'Ballistic superconductivity in semiconductor nanowires', Nature Communications, 8, http://dx.doi.org/10.1038/ncomms16025
,2017, 'Hard Superconducting Gap in InSb Nanowires', Nano Letters, 17, pp. 2690 - 2696, http://dx.doi.org/10.1021/acs.nanolett.7b00540
,2017, 'Demonstration of an ac Josephson junction laser', Science, 355, pp. 939 - 942, http://dx.doi.org/10.1126/science.aah6640
,2016, 'Conductance Quantization at Zero Magnetic Field in InSb Nanowires', Nano Letters, 16, pp. 3482 - 3486, http://dx.doi.org/10.1021/acs.nanolett.6b00051
,2015, 'Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles', Scientific Reports, 5, http://dx.doi.org/10.1038/srep12842
,2015, 'Edge-mode superconductivity in a two-dimensional topological insulator', Nature Nanotechnology, 10, pp. 593 - 597, http://dx.doi.org/10.1038/nnano.2015.86
,2014, 'Single-layer graphene on silicon nitride micromembrane resonators', Journal of Applied Physics, 115, http://dx.doi.org/10.1063/1.4862296
,2013, 'Radical-free dynamic nuclear polarization using electronic defects in silicon', Physical Review B - Condensed Matter and Materials Physics, 87, http://dx.doi.org/10.1103/PhysRevB.87.161306
,2013, 'Synthesis of long T
2013, 'In vivo magnetic resonance imaging of hyperpolarized silicon particles', Nature Nanotechnology, 8, pp. 363 - 368, http://dx.doi.org/10.1038/nnano.2013.65
,2011, 'Decay of nuclear hyperpolarization in silicon microparticles', Physical Review B - Condensed Matter and Materials Physics, 84, http://dx.doi.org/10.1103/PhysRevB.84.035304
,2009, 'Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents', ACS Nano, 3, pp. 4003 - 4008, http://dx.doi.org/10.1021/nn900996p
,2008, 'Bias spectroscopy and simultaneous single-electron transistor charge state detection of Si:P double dots', Nanotechnology, 19, pp. 265201 - 265205
,2007, 'Single shot charge detection using a radio-frequency quantum point contact', Applied Physics Letters, 91, pp. 222104 - 222106, http://dx.doi.org/10.1063/1.2809370
,Conference Papers
2009, 'Synthesis of silicon nanoparticles for hyperpolarized magnetic resonance imaging', in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000207862000792&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2006, 'Development of a silicon-based quantum cellular automata cell', in Jagadish C; Lu GQM (ed.), Nanotech 2006, Brisbane, Qld, pp. 9 - 12, presented at ICONN 2006: International Conference on Nanoscience and Nanotechnology, Brisbane, Qld, 03 July 2006 - 07 July 2006
,Preprints
2021, Spin-Relaxation Mechanisms in InAs Quantum Well Heterostructures, http://dx.doi.org/10.48550/arxiv.2111.15170
,2020, Dispersive readout of Majorana qubits, http://dx.doi.org/10.48550/arxiv.2009.00027
,2020, Evaluation of synthetic and experimental training data in supervised machine learning applied to charge state detection of quantum dots, http://dx.doi.org/10.48550/arxiv.2005.08131
,2020, Transparent Gatable Superconducting Shadow Junctions, http://dx.doi.org/10.48550/arxiv.2003.04487
,2019, Autonomous tuning and charge state detection of gate defined quantum dots, http://dx.doi.org/10.48550/arxiv.1911.10709
,2019, Repairing the Surface of InAs-based Topological Heterostructures, http://dx.doi.org/10.48550/arxiv.1908.08689
,2019, Characterising Quantum Devices at Scale with Custom Cryo-CMOS, http://dx.doi.org/10.48550/arxiv.1908.07685
,2018, Magnetic field resilient superconducting coplanar waveguide resonators for hybrid cQED experiments, http://dx.doi.org/10.48550/arxiv.1809.03932
,2018, A graphene transmon operating at 1 T, http://dx.doi.org/10.48550/arxiv.1806.10534
,2017, Ballistic superconductivity in semiconductor nanowires, http://dx.doi.org/10.48550/arxiv.1707.03024
,2017, Epitaxy of Advanced Nanowire Quantum Devices, http://dx.doi.org/10.48550/arxiv.1705.01480
,2017, Demonstration of an ac Josephson junction laser, http://dx.doi.org/10.1126/science.aah6640
,2017, Hard superconducting gap in InSb nanowires, http://dx.doi.org/10.48550/arxiv.1702.02578
,2017, Conductance through a helical state in an InSb nanowire, http://dx.doi.org/10.48550/arxiv.1701.06878
,2016, Conductance Quantization at zero magnetic field in InSb nanowires, http://dx.doi.org/10.48550/arxiv.1603.03751
,2014, Edge-mode Superconductivity in a Two Dimensional Topological Insulator, http://dx.doi.org/10.48550/arxiv.1408.1701
,2013, Graphene on silicon nitride for optoelectromechanical micromembrane resonators, http://dx.doi.org/10.48550/arxiv.1305.5890
,2013, In-vivo magnetic resonance imaging of hyperpolarized silicon particles, http://dx.doi.org/10.48550/arxiv.1305.3332
,2013, Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging, http://dx.doi.org/10.48550/arxiv.1305.0368
,2012, Radical-free dynamic nuclear polarization using electronic defects in silicon, http://dx.doi.org/10.48550/arxiv.1206.5125
,