Select Publications
Journal articles
2024, 'Soft robotic artificial left ventricle simulator capable of reproducing myocardial biomechanics', Science Robotics, 9, http://dx.doi.org/10.1126/scirobotics.ado4553
,2024, 'Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202307627
,2024, 'A mock circulation loop to evaluate differential hypoxemia during peripheral venoarterial extracorporeal membrane oxygenation', Perfusion (United Kingdom), 39, pp. 66 - 75, http://dx.doi.org/10.1177/02676591211056567
,2024, 'A Mock Circulatory Loop Analysis of Cardiorenal Hemodynamics With Intra-Aortic Mechanical Circulatory Support', ASAIO Journal, http://dx.doi.org/10.1097/MAT.0000000000002277
,2024, 'Afterload pressure and left ventricular contractility synergistically affect left atrial pressure during veno-arterial ECMO', JHLT Open, 3, pp. 100044 - 100044, http://dx.doi.org/10.1016/j.jhlto.2023.100044
,2024, 'The Clinical Utility of Introducing Pulsatility to Modern Mechanical Circulatory Support Devices Using Sino-Atrial Node Signals', Heart, Lung and Circulation, 33, pp. S290 - S290, http://dx.doi.org/10.1016/j.hlc.2024.06.356
,2023, 'Estimation of Left Ventricular Stroke Work for Rotary Left Ventricular Assist Devices', ASAIO Journal, 69, pp. 817 - 826, http://dx.doi.org/10.1097/MAT.0000000000001972
,2023, 'Imparting Multi-Scalar Architectural Control into Silk Materials Using a Simple Multi-Functional Ice-Templating Fabrication Platform', Advanced Materials Technologies, 8, http://dx.doi.org/10.1002/admt.202201642
,2023, 'Unobtrusive Human Fall Detection System Using mmWave Radar and Data Driven Methods', IEEE Sensors Journal, 23, pp. 7968 - 7976, http://dx.doi.org/10.1109/JSEN.2023.3245063
,2023, 'An Unobtrusive Human Activity Recognition System Using Low Resolution Thermal Sensors, Machine and Deep Learning', IEEE Transactions on Biomedical Engineering, 70, pp. 115 - 124, http://dx.doi.org/10.1109/TBME.2022.3186313
,2022, 'Fully Elman Neural Network: A Novel Deep Recurrent Neural Network Optimized by an Improved Harris Hawks Algorithm for Classification of Pulmonary Arterial Wedge Pressure', IEEE Transactions on Biomedical Engineering, 69, pp. 1733 - 1744, http://dx.doi.org/10.1109/TBME.2021.3129459
,2022, 'A Mock Circulatory Loop Analysis of an Intra-Aortic Cardiorenal Pump', Heart, Lung and Circulation, 31, pp. S66 - S66, http://dx.doi.org/10.1016/j.hlc.2022.06.053
,2021, 'Secondary flow in bifurcations – Important effects of curvature, bifurcation angle and stents', Journal of Biomechanics, 129, pp. 110755, http://dx.doi.org/10.1016/j.jbiomech.2021.110755
,2021, 'A Sensorless Control System for an Implantable Heart Pump Using a Real-Time Deep Convolutional Neural Network', IEEE Transactions on Biomedical Engineering, 68, pp. 3029 - 3038, http://dx.doi.org/10.1109/TBME.2021.3061405
,2021, 'Be still, my beating heart: reading pulselessness from Shakespeare to the artificial heart', Medical Humanities, 47, pp. 344 - 353, http://dx.doi.org/10.1136/medhum-2020-011962
,2021, 'Adaptive Sensorless Control of LVAD Using Deep Convolutional Neural Network', The Journal of Heart and Lung Transplantation, 40, pp. S172 - S172, http://dx.doi.org/10.1016/j.healun.2021.01.507
,2021, 'Aortic Valve Status Detection for Heart Failure Patient with LVAD Using Deep Neural Networks', The Journal of Heart and Lung Transplantation, 40, pp. S178 - S178, http://dx.doi.org/10.1016/j.healun.2021.01.522
,2020, 'An experimental evaluation of a concept to improve conventional aortic prostheses', Journal of Biomechanics, 112, http://dx.doi.org/10.1016/j.jbiomech.2020.110010
,2020, 'Investigation of the inherent left-right flow balancing of rotary total artificial hearts by means of a resistance box', Artificial Organs, 44, pp. 584 - 593, http://dx.doi.org/10.1111/aor.13631
,2020, 'A centralized multi-objective model predictive control for a biventricular assist device: An in vitro evaluation', Biomedical Signal Processing and Control, 59, http://dx.doi.org/10.1016/j.bspc.2020.101914
,2020, 'A Physiological Control System for an Implantable Heart Pump That Accommodates for Interpatient and Intrapatient Variations', IEEE Transactions on Biomedical Engineering, 67, pp. 1167 - 1175, http://dx.doi.org/10.1109/TBME.2019.2932233
,2020, 'A Starling-like total work controller for rotary blood pumps: An in vitro evaluation', Artificial Organs, 44, pp. E40 - E53, http://dx.doi.org/10.1111/aor.13570
,2020, 'Smart Triggering of the Barometer in a Fall Detector Using a Semi-Permeable Membrane', IEEE Transactions on Biomedical Engineering, 67, pp. 146 - 157, http://dx.doi.org/10.1109/TBME.2019.2909907
,2019, 'A centralized multi-objective model predictive control for a biventricular assist device: An in silico evaluation', Biomedical Signal Processing and Control, 49, pp. 137 - 148, http://dx.doi.org/10.1016/j.bspc.2018.10.021
,2019, 'Pulsatile conduit pressure gradients in the heartWare HVAD', ASAIO Journal, 65, pp. 489 - 494, http://dx.doi.org/10.1097/MAT.0000000000000964
,2018, 'A computational framework for adjusting flow during peripheral extracorporeal membrane oxygenation to reduce differential hypoxia', Journal of Biomechanics, 79, pp. 39 - 44, http://dx.doi.org/10.1016/j.jbiomech.2018.07.037
,2018, 'A multiphysics biventricular cardiac model: Simulations with a left-ventricular assist device', Frontiers in Physiology, 9, pp. 1259, http://dx.doi.org/10.3389/fphys.2018.01259
,2018, 'Application of multiobjective neural predictive control to biventricular assistance using dual rotary blood pumps', Biomedical Signal Processing and Control, 39, pp. 81 - 93, http://dx.doi.org/10.1016/j.bspc.2017.07.028
,2018, 'Pulmonary Valve Opening With Two Rotary Left Ventricular Assist Devices for Biventricular Support', Artificial Organs, 42, pp. 31 - 40, http://dx.doi.org/10.1111/aor.12967
,2018, 'Estimation of Preload Using an Implantable Left Ventricular Assist Device', Heart, Lung and Circulation, 27, pp. S367 - S368, http://dx.doi.org/10.1016/j.hlc.2018.06.728
,2018, 'Evidence for Pulsatile Inertance as a Cause of Outflow Conduit Pressure Loss in the Heartware HVAD', Heart, Lung and Circulation, 27, pp. S98 - S98, http://dx.doi.org/10.1016/j.hlc.2018.06.124
,2017, 'A Low-Power Fall Detector Balancing Sensitivity and False Alarm Rate', IEEE Journal of Biomedical and Health Informatics, 22, pp. 1929 - 1937, http://dx.doi.org/10.1109/JBHI.2017.2778271
,2017, 'Selecting Power-Efficient Signal Features for a Low-Power Fall Detector', IEEE Transactions on Biomedical Engineering, 64, pp. 2729 - 2736, http://dx.doi.org/10.1109/TBME.2017.2669338
,2017, 'In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps', Artificial Organs, 41, pp. 911 - 922, http://dx.doi.org/10.1111/aor.12962
,2017, 'Flow mixing during peripheral veno-arterial extra corporeal membrane oxygenation – A simulation study', Journal of Biomechanics, 55, pp. 64 - 70, http://dx.doi.org/10.1016/j.jbiomech.2017.02.009
,2017, 'Preload-based Starling-like control of rotary blood pumps: An in-vitro evaluation', PLoS ONE, 12, pp. e0172393, http://dx.doi.org/10.1371/journal.pone.0172393
,2016, 'In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices', Artificial Organs, 40, pp. 894 - 903, http://dx.doi.org/10.1111/aor.12654
,2016, 'Mitral Valve Regurgitation with a Rotary Left Ventricular Assist Device: The Haemodynamic Effect of Inlet Cannulation Site and Speed Modulation', Annals of Biomedical Engineering, 44, pp. 2674 - 2682, http://dx.doi.org/10.1007/s10439-016-1579-5
,2016, 'Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study', Annals of Biomedical Engineering, 44, pp. 2377 - 2387, http://dx.doi.org/10.1007/s10439-016-1552-3
,2016, 'In Vitro Comparison of Active and Passive Physiological Control Systems for Biventricular Assist Devices', Annals of Biomedical Engineering, 44, pp. 1370 - 1380, http://dx.doi.org/10.1007/s10439-015-1425-1
,2016, 'Numerical Simulation of a Biventricular Assist Device with Fixed Right Outflow Cannula Banding During Pulmonary Hypertension', Annals of Biomedical Engineering, 44, pp. 1008 - 1018, http://dx.doi.org/10.1007/s10439-015-1388-2
,2015, 'Banding the Right Ventricular Assist Device Outflow Conduit: Is It Really Necessary With Current Devices?', Artificial Organs, 39, pp. 1055 - 1061, http://dx.doi.org/10.1111/aor.12497
,2015, 'Hemodynamic Response to Exercise and Head-Up Tilt of Patients Implanted With a Rotary Blood Pump: A Computational Modeling Study', Artificial Organs, 39, pp. E24 - E35, http://dx.doi.org/10.1111/aor.12370
,2014, 'In Vitro and In Vivo Characterization of Three Different Modes of Pump Operation When Using a Left Ventricular Assist Device as a Right Ventricular Assist Device', Artificial Organs, 38, pp. 931 - 939, http://dx.doi.org/10.1111/aor.12289
,2014, 'Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach', Artificial Organs, 38, pp. 766 - 774, http://dx.doi.org/10.1111/aor.12303
,2014, 'In-vitro evaluation of physiological controller response of rotary blood pumps to changes in patient state', Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2014, pp. 294 - 297, http://dx.doi.org/10.1109/EMBC.2014.6943587
,2014, 'Starling-like flow control of a left ventricular assist device: In vitro validation', Artificial Organs, 38, http://dx.doi.org/10.1111/aor.12221
,2014, 'Banding of Right Ventricular Assist Device (RVAD) of Outflow Conduit: Is It Really Necessary With Current Devices?', The Journal of Heart and Lung Transplantation, 33, pp. S238 - S238, http://dx.doi.org/10.1016/j.healun.2014.01.620
,2013, 'Evaluation of a morphological filter in mean cardiac output determination: Application to left ventricular assist devices', Medical and Biological Engineering and Computing, 51, pp. 891 - 899, http://dx.doi.org/10.1007/s11517-013-1061-6
,2013, 'Developments in control systems for rotary left ventricular assist devices for heart failure patients: A review', Physiological Measurement, 34, pp. R1 - R27, http://www.scopus.com/inward/record.url?eid=2-s2.0-84871463426&partnerID=40&md5=15a8953220c1216c75d995083ee0122f
,