Select Publications
Book Chapters
2024, 'Electronic and Optical Properties of Perovskite Semiconductor', in Engineering Materials, pp. 51 - 70, http://dx.doi.org/10.1007/978-3-031-57663-8_3
,Journal articles
2024, 'Cd-Free High-Bandgap Cu
2024, 'Dopant induced hollow Ni
2024, 'Methylammonium-Free Ink for Low-Temperature Crystallization of α-FAPbI
2024, 'Unveiling the Role of Ge in CZTSSe Solar Cells by Advanced Micro-To-Atom Scale Characterizations', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202305938
,2024, 'Opinion Mining by Convolutional Neural Networks for Maximizing Discoverability of Nanomaterials', Journal of Chemical Information and Modeling, 64, pp. 2746 - 2759, http://dx.doi.org/10.1021/acs.jcim.3c00746
,2024, 'Facile Approach for Metallic Precursor Engineering for Efficient Kesterite Thin-Film Solar Cells', ACS Applied Materials and Interfaces, 16, pp. 16328 - 16339, http://dx.doi.org/10.1021/acsami.4c01230
,2024, 'The Intermediate Connection of Subcells in Si-based Tandem Solar Cells', Small Methods, 8, http://dx.doi.org/10.1002/smtd.202300432
,2024, 'Cd-Free Pure Sulfide Kesterite Cu
2024, 'Methylammonium‐Free Ink for Low‐Temperature Crystallization of α‐FAPbI3 Perovskite (Adv. Energy Mater. 30/2024)', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202470124
,2023, 'Improving Long-Term Stability of Kesterite Thin-Film Solar Cells with Oxide/Metal/Oxide Multilayered Transparent Conducting Electrodes', Solar RRL, 7, http://dx.doi.org/10.1002/solr.202300199
,2023, 'Earth-abundant photoelectrodes for water splitting and alternate oxidation reactions: Recent advances and future perspectives', Progress in Materials Science, 134, http://dx.doi.org/10.1016/j.pmatsci.2023.101073
,2023, 'Rear interface engineering via a facile oxidation process of Mo back contact for highly efficient CZTSSe thin film solar cells', Journal of Alloys and Compounds, 935, http://dx.doi.org/10.1016/j.jallcom.2022.167993
,2023, 'A Critical Review on the Progress of Kesterite Solar Cells: Current Strategies and Insights', Advanced Energy Materials, 13, http://dx.doi.org/10.1002/aenm.202203046
,2023, 'Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive', Nature Photonics, 17, pp. 96 - 105, http://dx.doi.org/10.1038/s41566-022-01111-x
,2022, '10.3% Efficient Green Cd-Free Cu
2022, 'Large-Grain Spanning Monolayer Cu
2022, 'Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells', Nature Energy, http://dx.doi.org/10.1038/s41560-022-01078-7
,2021, 'Evolution of structural and optoelectronic properties in fluorine–aluminum co-doped zinc oxide (FAZO) thin films and their application in CZTSSe thin-film solar cells', Solar Energy Materials and Solar Cells, 232, http://dx.doi.org/10.1016/j.solmat.2021.111342
,2021, 'Systematic Efficiency Improvement for Cu
2021, 'Interface engineering of p-n heterojunction for kesterite photovoltaics: A progress review', Journal of Energy Chemistry, 60, pp. 1 - 8, http://dx.doi.org/10.1016/j.jechem.2020.12.019
,2021, 'Bioinspired oil-soluble polymers based on catecholamine chemistry for reduced friction', Journal of Applied Polymer Science, 138, http://dx.doi.org/10.1002/app.50472
,2021, 'Kesterite Solar Cells: Insights into Current Strategies and Challenges', Advanced Science, 8, pp. 2004313, http://dx.doi.org/10.1002/advs.202004313
,2021, 'High Efficiency Cu
2021, 'A Facile Process for Partial Ag Substitution in Kesterite Cu
2021, 'Colloidal Ni
2020, '11.6% Efficient Pure Sulfide Cu(In,Ga)S
2020, 'Thermo-Sensitive Dual-Functional Nanospheres with Enhanced Lubrication and Drug Delivery for the Treatment of Osteoarthritis', Chemistry - A European Journal, 26, pp. 10564 - 10574, http://dx.doi.org/10.1002/chem.202001372
,2020, 'Burn-In Degradation Mechanism Identified for Small Molecular Acceptor-Based High-Efficiency Nonfullerene Organic Solar Cells', ACS Applied Materials and Interfaces, 12, pp. 27433 - 27442, http://dx.doi.org/10.1021/acsami.0c05978
,2020, 'Effect of a graphene oxide intermediate layer in Cu 2 ZnSn (S, Se) 4 solar cells', Journal of Materials Chemistry A
,2020, 'Interface Modification Enabled by Atomic Layer Deposited Ultra-Thin Titanium Oxide for High-Efficiency and Semitransparent Organic Solar Cells', Solar RRL, 4, pp. 2000497 - 2000497, http://dx.doi.org/10.1002/solr.202000497
,2020, 'Self-Standing 3D Core-Shell Nanohybrids Based on Amorphous Co-Fe-Bi Nanosheets Grafted on NiCo2O4 Nanowires for Efficient and Durable Water Oxidation', ACS Applied Energy Materials
,2018, 'Optimization of CdS Buffer Layer for High Efficiency Earth-Abundant Cu2ZnSn(S, Se)4 Thin Film Solar Cells', Nanoscience and Nanotechnology Letters, 10, pp. 503 - 511, http://dx.doi.org/10.1166/nnl.2018.2687
,2018, 'Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment', Nature Energy, 3, pp. 764 - 764, http://dx.doi.org/10.1038/s41560-018-0206-0
,2018, 'Cu2Sn1-xGexS3 thin film solar cells fabricated from sputtered precursors: Effects of soft-annealing process', Materials Science in Semiconductor Processing, 85, pp. 160 - 167
,2018, 'Improved performance of sputtered Cu2 (Sn, Ge) S3 thin film for photovoltaic application via controlled Ge doping', Materials Letters, 211, pp. 130 - 132
,2017, 'Aqueous-Solution-Processed Cu2ZnSn (S, Se) 4 Thin-Film Solar Cells via an Improved Successive Ion-Layer-Adsorption–Reaction Sequence', ACS omega, 2, pp. 9211 - 9220
,2017, 'Fabrication of sputtered deposited Cu2SnS3 (CTS) thin film solar cell with power conversion efficiency of 2.39%', Journal of Alloys and Compounds, 701, pp. 901 - 908
,2017, 'Influence of selenium doping on the properties of Cu2Sn (SxSe1- x) 3 thin-film solar cells fabricated by sputtering', Solar Energy Materials and Solar Cells, 172, pp. 154 - 159
,2017, 'Room temperature liquefied petroleum gas sensing using Cu 2 SnS 3 /CdS heterojunction', Journal of Alloys and Compounds, 709, pp. 92 - 103, http://dx.doi.org/10.1016/j.jallcom.2017.03.135
,2016, 'Amines free environmentally friendly rapid synthesis of Cu2SnS3 nanoparticles', Optical Materials, 58, pp. 268 - 278, http://dx.doi.org/10.1016/j.optmat.2016.03.032
,2016, 'ChemInform Abstract: Development of Cu2SnS3 (CTS) Thin Film Solar Cells by Physical Techniques: A Status Review', ChemInform, 47, http://dx.doi.org/10.1002/chin.201639256
,2016, 'Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review', Solar Energy Materials and Solar Cells, 153, pp. 84 - 107, http://dx.doi.org/10.1016/j.solmat.2016.04.003
,2016, 'Towards cost effective metal precursor sources for future photovoltaic material synthesis: CTS nanoparticles', Optical Materials, 54, pp. 207 - 216, http://dx.doi.org/10.1016/j.optmat.2016.02.040
,Preprints
2022, Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells, http://dx.doi.org/10.21203/rs.3.rs-1274090/v1
,Rear Interface Engineering Via a Facile Oxidation Process of Mo Back Contact for Highly Efficient Cztsse Thin Film Solar Cells, http://dx.doi.org/10.2139/ssrn.4197801
,