Select Publications

Preprints

Fojt J; Rossi TP; Kumar PV; Erhart P, 2023, Tailoring hot-carrier distributions of plasmonic nanostructures through surface alloying, http://dx.doi.org/10.48550/arxiv.2311.09996

Ji D; Lee Y; Nishina Y; Kamiya K; Daiyan R; Wen X; Chu D; Yoshimura M; Kumar P; Andreeva D; Novoselov K; Lee G-H; Joshi R; Foller T, 2023, Angstrom-confined electrochemical synthesis of sub-unit cell non van der Waals 2D metal oxides, http://dx.doi.org/10.26434/chemrxiv-2022-1q6gb-v4

Ji D; Lee Y; Nishina Y; Kamiya K; Daiyan R; Wen X; Chu D; Yoshimura M; Kumar P; Andreeva D; Novoselov K; Lee G-H; Joshi R; Foller T, 2023, Angstrom-confined electrochemical synthesis of sub-unit cell non van der Waals 2D metal oxides, http://dx.doi.org/10.26434/chemrxiv-2022-1q6gb-v3

Ji D; Lee Y; Nishina Y; Kamiya K; Daiyan R; Wen X; Chu D; Yoshimura M; Kumar P; Andreeva D; Novoselov K; Lee G-H; Joshi R; Foller T, 2023, Angstrom-confined electrochemical synthesis of non van der Waals 2D metal oxides, http://dx.doi.org/10.26434/chemrxiv-2022-1q6gb-v2

Ji D; Lee Y; Nishina Y; Kamiya K; Daiyan R; Wen X; Chu D; Yoshimura M; Kumar P; Lee G-H; Joshi R; Foller T, 2022, Angstrom-confined electrochemical synthesis of non van der Waals 2D metal oxides, http://dx.doi.org/10.26434/chemrxiv-2022-1q6gb

Wen X; Foller T; Jin X; Musso T; Kumar P; Joshi R, 2022, Understanding water transport through graphene-based nanochannels via experimental control of slip length, http://dx.doi.org/10.26434/chemrxiv-2022-b61sx-v3

Wen X; Foller T; Jin X; Musso T; Kumar P; Joshi R, 2022, Understanding water transport through graphene-based nanochannels via experimental control of slip length, http://dx.doi.org/10.26434/chemrxiv-2022-b61sx-v2

Wen X; Foller T; Jin X; Musso T; Kumar P; Joshi R, 2022, Understanding water transport through graphene-based nanochannels via experimental control of slip length, http://dx.doi.org/10.26434/chemrxiv-2022-b61sx

Wu Y-H; Mehta H; Willinger E; Yuwono J; Kumar P; Abdala P; Wach A; Kierzkowska A; Donat F; Kuznetsov D; Muller C, 2022, Altering oxygen binding by redox-inactive metal substitution to control catalytic activity: oxygen reduction on manganese oxide nanoparticles as a model system, http://dx.doi.org/10.26434/chemrxiv-2022-wzr8v

Foller T; Madauss L; Ji D; Ren X; De Silva KKH; Yoshimura TMM; Lebius H; Benyagoub A; Kumar P; Schleberger M; Joshi R, 2022, Mass transport via in-plane nanopores in graphene oxide membranes, http://dx.doi.org/10.48550/arxiv.2201.11886

Mule AS; Mazzotti S; Rossinelli AA; Aellen M; Prins PT; van der Bok JC; Solari SF; Glauser YM; Kumar PV; Riedinger A; Norris DJ, 2020, Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals, http://dx.doi.org/10.26434/chemrxiv.13311881

Mule AS; Mazzotti S; Rossinelli AA; Aellen M; Prins PT; van der Bok JC; Solari SF; Glauser YM; Kumar PV; Riedinger A; Norris DJ, 2020, Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals, http://dx.doi.org/10.26434/chemrxiv.13311881.v1

Foller T; Daiyan R; Jin X; Leverett J; Kim H; Webster R; Yap JE; Wen X; Rawal A; DeSilva KKH; Yoshimura M; Bustamante H; Chang SLY; Kumar P; You Y; Lee GH; Amal R; Joshi R, 2020, Enhanced graphitic domains of unreduced graphene oxide and the interplay of hydration behaviour and catalytic activity, http://dx.doi.org/10.48550/arxiv.2007.00860

Bernardi M; Lohrman J; Kumar PV; Kirkeminde A; Ferralis N; Grossman JC; Ren S, 2012, Nanocarbon-Based photovoltaics, http://dx.doi.org/10.48550/arxiv.1206.5042

Das B; Toledo-Carrillo E; Li G; Ståhle J; Thersleff T; Chen J; Li L; Ye F; Slabon A; Göthelid M; Weng T-C; Yuwono JA; Kumar PV; Verho O; Kärkäs MD; Dutta J; Åkermark B, Regenerable and Bifunctional Electrode for Hydrogen Production from Water at Neutral Ph, http://dx.doi.org/10.2139/ssrn.4257122


Back to profile page