Select Publications
Journal articles
2024, 'Ultra-thin freestanding terahertz frequency selective surface on flexible cyclic olefin copolymer', Journal of Physics D: Applied Physics, 57, http://dx.doi.org/10.1088/1361-6463/ad2ab0
,2024, 'Demonstration of photonics-based D-band integrated localization and communication', Applied Optics, 63, pp. 4068 - 4076, http://dx.doi.org/10.1364/AO.516852
,2024, '3D-printed terahertz subwavelength dual-core fibers with dense channel-integration', Journal of Lightwave Technology, http://dx.doi.org/10.1109/JLT.2024.3487649
,2023, 'Terahertz Properties of Common Microwave Dielectric Materials', Journal of Infrared, Millimeter, and Terahertz Waves, 44, pp. 873 - 884, http://dx.doi.org/10.1007/s10762-023-00940-3
,2023, 'Terahertz imaging: a diagnostic technology for prevention of grass seed infestation', Optics Express, 31, pp. 37030 - 37039, http://dx.doi.org/10.1364/OE.501194
,2023, 'Nonreciprocity in optical fiber radiation modes induced by spin–momentum locking', Optics and Laser Technology, 160, http://dx.doi.org/10.1016/j.optlastec.2022.109060
,2023, '20 dB improvement utilizing custom-designed 3D-printed terahertz horn coupler', Optics Express, 31, pp. 65 - 74, http://dx.doi.org/10.1364/OE.480832
,2023, 'Terahertz Hybrid Topological Chip for 10-Gbps Full-Duplex Communications', Electronics (Switzerland), 12, http://dx.doi.org/10.3390/electronics12010109
,2022, 'Terahertz polarization-maintaining sampled gratings for dual-frequency filtering and dispersion compensation', Results in Physics, 39, http://dx.doi.org/10.1016/j.rinp.2022.105721
,2022, 'Compact terahertz birefringent gratings for dispersion compensation', Optics Express, 30, pp. 8794 - 8803, http://dx.doi.org/10.1364/OE.448739
,2021, '3D-Printed Terahertz Topological Waveguides', Advanced Materials Technologies, 6, http://dx.doi.org/10.1002/admt.202100252
,2021, 'Meandering Pattern 433 MHz Antennas for Ingestible Capsules', IEEE Access, 9, pp. 91874 - 91882, http://dx.doi.org/10.1109/ACCESS.2021.3092068
,2021, 'Terahertz Waveguide: 3D‐Printed Terahertz Topological Waveguides (Adv. Mater. Technol. 7/2021)', Advanced Materials Technologies, 6, http://dx.doi.org/10.1002/admt.202170040
,2020, 'Broadband Single-Mode Hybrid Photonic Crystal Waveguides for Terahertz Integration on a Chip', Advanced Materials Technologies, 5, http://dx.doi.org/10.1002/admt.202000117
,2020, 'Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves', APL Photonics, 5, pp. 046101, http://dx.doi.org/10.1063/1.5144115
,2020, 'Realization of a Single-Layer Terahertz Magnetic Mirror', IEEE Access, 8, pp. 229108 - 229116, http://dx.doi.org/10.1109/ACCESS.2020.3045446
,2020, 'Terahertz Waveguides: Broadband Single‐Mode Hybrid Photonic Crystal Waveguides for Terahertz Integration on a Chip (Adv. Mater. Technol. 7/2020)', Advanced Materials Technologies, 5, http://dx.doi.org/10.1002/admt.202070039
,2019, 'Radiated and guided optical waves of a magnetic dipole-nanofiber system', Scientific Reports, 9, pp. 3568, http://dx.doi.org/10.1038/s41598-018-38115-z
,2019, 'Analysis of a hyperprism for exciting high- k modes and subdiffraction imaging', Physical Review B, 100, pp. 115146, http://dx.doi.org/10.1103/PhysRevB.100.115146
,2018, 'Terahertz polarization-maintaining subwavelength filters', Optics Express, 26, pp. 25617 - 25629, http://dx.doi.org/10.1364/OE.26.025617
,2018, 'Enhanced terahertz magnetic dipole response by subwavelength fiber', APL Photonics, 3, pp. 051701, http://dx.doi.org/10.1063/1.5010348
,2018, 'Preface to Special Topic: Frontiers on THz photonic devices', APL Photonics, 3, pp. 051501, http://dx.doi.org/10.1063/1.5039879
,2018, 'Dipole-fiber system: from single photon source to metadevices', Frontiers of Optoelectronics, 11, pp. 30 - 36, http://dx.doi.org/10.1007/s12200-018-0762-8
,2017, 'Fiber-Drawn Metamaterial for THz Waveguiding and Imaging', Journal of Infrared, Millimeter, and Terahertz Waves, 38, pp. 1162 - 1178, http://dx.doi.org/10.1007/s10762-017-0383-0
,2017, 'Revisiting EPID design for modern radiotherapy requirements', RADIOTHERAPY AND ONCOLOGY, 123, pp. S406 - S406, http://dx.doi.org/10.1016/S0167-8140(17)31204-5
,2017, 'A prism based magnifying hyperlens with broad-band imaging', Applied Physics Letters, 110, pp. 101106, http://dx.doi.org/10.1063/1.4978445
,2016, 'In silico investigation of factors affecting the MV imaging performance of a novel water-equivalent EPID', Physica Medica, 32, pp. 1819 - 1826, http://dx.doi.org/10.1016/j.ejmp.2016.09.019
,2016, 'Flexible single-mode hollow-core terahertz fiber with metamaterial cladding', Optica, 3, pp. 941 - 947, http://dx.doi.org/10.1364/OPTICA.3.000941
,2016, 'Linearly polarized single TM mode terahertz waveguide', Optics Letters, 41, pp. 4004 - 4007, http://dx.doi.org/10.1364/OL.41.004004
,2016, 'Removing image artefacts in wire array metamaterials', Optics Express, 24, pp. 17989 - 18002, http://dx.doi.org/10.1364/OE.24.017989
,2016, 'Compact air-cavity resonators within a metamaterial waveguide', Optics Letters, 41, pp. 3379 - 3382, http://dx.doi.org/10.1364/OL.41.003379
,2016, 'Strong Magnetic Response of Optical Nanofibers', ACS Photonics, 3, pp. 972 - 978, http://dx.doi.org/10.1021/acsphotonics.6b00030
,2013, 'Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials', Journal of the Optical Society of America B: Optical Physics, 30, pp. 851 - 867, http://dx.doi.org/10.1364/JOSAB.30.000851
,2013, 'Terahertz dielectric waveguides', Advances in Optics and Photonics, 5, pp. 169 - 215, http://dx.doi.org/10.1364/AOP.5.000169
,2012, 'Fiber-drawn double split ring resonators in the terahertz range', Optical Materials Express, 2, pp. 1254 - 1259, http://dx.doi.org/10.1364/OME.2.001254
,2012, 'Hollow-core waveguides with uniaxial metamaterial cladding: Modal equations and guidance conditions', Journal of the Optical Society of America B: Optical Physics, 29, pp. 2462 - 2477, http://dx.doi.org/10.1364/JOSAB.29.002462
,2012, 'Spatial dispersion in three-dimensional drawn magnetic metamaterials', Optics Express, 20, pp. 11924 - 11935, http://dx.doi.org/10.1364/OE.20.011924
,2011, 'Direct probing of evanescent field for characterization of porous terahertz fibers', Applied Physics Letters, 98, http://dx.doi.org/10.1063/1.3568892
,2009, 'Cleaving of extremely porous polymer fibers', IEEE Photonics Journal, 1, pp. 286 - 292, http://dx.doi.org/10.1109/JPHOT.2009.2038796
,2009, 'THz porous fibers: Design, fabrication and experimental characterization', Optics Express, 17, pp. 14053 - 14062, http://dx.doi.org/10.1364/OE.17.014053
,2009, 'Low loss, low dispersion and highly birefringent terahertz porous fibers', Optics Communications, 282, pp. 36 - 38, http://dx.doi.org/10.1016/j.optcom.2008.09.058
,2008, 'Porous fibers: A novel approach to low loss THz waveguides', Optics Express, 16, pp. 8845 - 8854, http://dx.doi.org/10.1364/OE.16.008845
,2004, 'Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals', IEE Proceedings: Science, Measurement and Technology, 151, pp. 327 - 334, http://dx.doi.org/10.1049/ip-smt:20040819
,2004, 'A new method for calculating propagation modes of a one-dimensional photonic crystal', International Journal of Engineering, Transactions A: Basics, 17, pp. 25 - 28
,