Select Publications

Journal articles

Dadzie FA; Moles AT; Erickson TE; Machado de Lima N; Muñoz-Rojas M, 2024, 'Inoculating native microorganisms improved soil function and altered the microbial composition of a degraded soil', Restoration Ecology, 32, http://dx.doi.org/10.1111/rec.14025

Machado-de-Lima NM; Charlesworth J; Stewart J; Ooi MKJ; Muñoz-Rojas M, 2023, 'Seed biopriming at different concentrations to assess the effects of Cyanobacteria on germination and seedling performance of keystone arid species', Journal of Sustainable Agriculture and Environment, 2, pp. 266 - 275, http://dx.doi.org/10.1002/sae2.12049

Schultz NL; Sluiter IRK; Allen GG; Machado-de-Lima NM; Muñoz-Rojas M, 2022, 'Biocrust Amendments to Topsoils Facilitate Biocrust Restoration in a Post-mining Arid Environment', Frontiers in Microbiology, 13, http://dx.doi.org/10.3389/fmicb.2022.882673

Jiménez-González MA; Machado de Lima N; Chilton AM; Almendros G; Muñoz-Rojas M, 2022, 'Biocrust cyanobacteria inoculants biomineralize gypsum and preserve indigenous bacterial communities in dryland topsoil', Geoderma, 406, http://dx.doi.org/10.1016/j.geoderma.2021.115527

Muñoz-Rojas M; Machado de Lima NM; Chamizo S; Bowker MA, 2021, 'Restoring post-fire ecosystems with biocrusts: Living, photosynthetic soil surfaces', Current Opinion in Environmental Science and Health, 23, http://dx.doi.org/10.1016/j.coesh.2021.100273

Machado de Lima NM; Muñoz-Rojas M; Vázquez-Campos X; Branco LHZ, 2021, 'Biocrust cyanobacterial composition, diversity, and environmental drivers in two contrasting climatic regions in Brazil', Geoderma, 386, http://dx.doi.org/10.1016/j.geoderma.2020.114914

Stewart J; Machado de Lima N; Kingsford R; Muñoz-Rojas M, 2021, 'Soil microbial responses to passive restoration strategies in drylands: a temporal comparison of soil biodiversity and ecosystem function', , http://dx.doi.org/10.5194/egusphere-egu21-16398

Machado de Lima N; Thomsen A; Ooi M; Muñoz-Rojas M, 2021, 'Bushfire impacts on a threatened swamp ecosystem: responses of the soil microbial communities and restoration', , http://dx.doi.org/10.5194/egusphere-egu21-3778

Lim NMMHD; Branco LHZ, 2020, 'Biological soil crusts: New genera and species of Cyanobacteria from Brazilian semi-Arid regions', Phytotaxa, 470, pp. 263 - 281, http://dx.doi.org/10.11646/phytotaxa.470.4.1

Machado-de-Lima NM; Fernandes VMC; Roush D; Velasco Ayuso S; Rigonato J; Garcia-Pichel F; Branco LHZ, 2019, 'The Compositionally Distinct Cyanobacterial Biocrusts From Brazilian Savanna and Their Environmental Drivers of Community Diversity', Frontiers in Microbiology, 10, http://dx.doi.org/10.3389/fmicb.2019.02798

Martins MD; Machado-de-Lima NM; Branco LHZ, 2019, 'Polyphasic approach using multilocus analyses supports the establishment of the new aerophytic cyanobacterial genus Pycnacronema (Coleofasciculaceae, Oscillatoriales)', Journal of Phycology, 55, pp. 146 - 159, http://dx.doi.org/10.1111/jpy.12805

Fernandes VMC; Machado de Lima NM; Roush D; Rudgers J; Collins SL; Garcia-Pichel F, 2018, 'Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert', Environmental Microbiology, 20, pp. 259 - 269, http://dx.doi.org/10.1111/1462-2920.13983

Machado-de-Lima NM; Martins MD; Branco LHZ, 2017, 'Description of a tropical new species of Wilmottia (Oscillatoriales, Cyanobacteria) and considerations about the monophyly of W. murrayi', Phytotaxa, 307, pp. 43 - 54, http://dx.doi.org/10.11646/phytotaxa.307.1.4

Conforto EDC; Facincani A; Lima CS; Nanya LH; Tralli MP; Machado de Lima NM; Goulart Nishimura RY; Andreoli RP, 2014, 'Germination of the seeds and initial development of Erythrina mulungu (Mart. ex. Benth)', AGRARIAN, 7, pp. 197 - 204, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000219657500003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1

Other

Muñoz-Rojas M; Dadzie F; Machado de Lima N, 2024,  Soil microbial based strategies and seed enhancement technologies reconnect plant-soil biodiversity and improve restoration outcomes , http://dx.doi.org/10.5194/egusphere-egu24-16797

Muñoz-Rojas M; Dadzie F; Machado de Lima N, 2023, Emerging soil microbial-based strategies and seed enhancement technologies for restoring biodiverse degraded ecosystems, http://dx.doi.org/10.5194/egusphere-egu23-14965

Machado de Lima NM; Tangney R; Muñoz Rojas M; Ooi M, 2023, Seed microbial community characterisation and isolation from three species common to fire-prone Australia., http://dx.doi.org/10.5194/egusphere-egu23-10170

Dadzie F; Machado de Lima N; Muñoz- Rojas M, 2022, Native soil bacteria and biocrust cyanobacteria inoculation improve seedling emergence of native plants on saline dryland soils , http://dx.doi.org/10.5194/egusphere-egu22-9005

Machado de Lima N; Munoz Rojas M, 2022, Teaching and enriching younger generations perception of soil ecosystems and dryland restoration through soil biocrusts, http://dx.doi.org/10.5194/egusphere-egu22-8943


Back to profile page