Select Publications
Journal articles
2024, 'Fabrication of Electronically Conductive Protein-Heme Nanowires for Power Harvesting', Small, 20, http://dx.doi.org/10.1002/smll.202311661
,2024, 'Fabrication of Electronically Conductive Protein‐Heme Nanowires for Power Harvesting (Small 29/2024)', Small, 20, http://dx.doi.org/10.1002/smll.202470221
,2023, 'Protonic conductivity in metalloprotein nanowires', Journal of Materials Chemistry C, 11, pp. 3626 - 3633, http://dx.doi.org/10.1039/d2tc05373j
,2022, 'Harnessing the Structural and Functional Diversity of Protein Filaments as Biomaterial Scaffolds', ACS Applied Bio Materials, 5, pp. 4668 - 4686, http://dx.doi.org/10.1021/acsabm.2c00275
,2022, 'Effectiveness of bio-dispersant in homogenizing hydroxyapatite for proliferation and differentiation of osteoblast', Journal of Colloid and Interface Science, 611, pp. 491 - 502, http://dx.doi.org/10.1016/j.jcis.2021.12.088
,2021, 'Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus', International Journal of Biological Macromolecules, 191, pp. 299 - 304, http://dx.doi.org/10.1016/j.ijbiomac.2021.09.028
,2020, 'Structural Determination of a Filamentous Chaperone to Fabricate Electronically Conductive Metalloprotein Nanowires', ACS Nano, 14, pp. 6559 - 6569, http://dx.doi.org/10.1021/acsnano.9b09405
,2020, 'Production of Nylon-6/Cellulose Nanocrystal Composite Films Using Solvent Dissolution', Sugar Tech, 22, pp. 328 - 339, http://dx.doi.org/10.1007/s12355-019-00775-0
,2020, 'The Effect of Hydroxyapatite Prepared by In Situ Synthesis on the Properties of Poly(Vinyl Alcohol)/Cellulose Nanocrystals Biomaterial', Journal of Polymers and the Environment, 28, pp. 141 - 151, http://dx.doi.org/10.1007/s10924-019-01599-5
,2019, 'Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals', Carbohydrate Polymers, 205, pp. 159 - 166, http://dx.doi.org/10.1016/j.carbpol.2018.10.034
,2018, 'In situ biosynthesis of bacterial nanocellulose incorporated with hydroxyapatite/cellulose nanocrystals', NEW BIOTECHNOLOGY, 44, pp. S11 - S11, http://dx.doi.org/10.1016/j.nbt.2018.05.172
,2018, 'Extraction of cellulose nanofibrils from amylase-treated cassava bagasse using high-pressure homogenization', Cellulose, 25, pp. 1757 - 1768, http://dx.doi.org/10.1007/s10570-018-1686-6
,2018, 'Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization', Carbohydrate Polymers, 179, pp. 394 - 401, http://dx.doi.org/10.1016/j.carbpol.2017.09.101
,2017, 'Characterization of Cellulose Nanocrystals Extracted from Sugarcane Bagasse for Potential Biomedical Materials', Sugar Tech, 19, pp. 539 - 552, http://dx.doi.org/10.1007/s12355-016-0507-1
,2017, 'Utilizing cellulose from sugarcane bagasse mixed with poly(vinyl alcohol) for tissue engineering scaffold fabrication', Industrial Crops and Products, 100, pp. 183 - 197, http://dx.doi.org/10.1016/j.indcrop.2017.02.031
,2017, 'Effect of varying hydrolysis time on extraction of spherical bacterial cellulose nanocrystals as a reinforcing agent for poly(vinyl alcohol) composites', Journal of Polymer Research, 24, http://dx.doi.org/10.1007/s10965-017-1232-5
,2016, 'Research and Development Prospects for Sugarcane and Sugar Industry in Thailand', Sugar Tech, 18, pp. 583 - 587, http://dx.doi.org/10.1007/s12355-016-0495-1
,Preprints
2023, Fabrication of electronically conductive protein-heme nanowires for power harvesting, http://dx.doi.org/10.48550/arxiv.2310.10042
,