Select Publications

Preprints

Gray JL; Naman AT; Taubman DS, 2024, Multi-view Disparity Estimation Using a Novel Gradient Consistency Model, http://arxiv.org/abs/2405.17029v1

Li X; Naman A; Taubman D, 2024, Neural Network Assisted Lifting Steps For Improved Fully Scalable Lossy Image Compression in JPEG 2000, http://arxiv.org/abs/2403.01647v1

Li X; Naman A; Taubman D, 2024, Exploration of Learned Lifting-Based Transform Structures for Fully Scalable and Accessible Wavelet-Like Image Compression, http://arxiv.org/abs/2402.18761v1

Jayasooriya K; Jenner S; Marasinghe P; Senanayake U; Saadat H; Taubman D; Ragel R; Gamaarachchi H; Deveson I, 2024, A new compression strategy to reduce the size of nanopore sequencing data, http://dx.doi.org/10.1101/2024.10.02.616377

Karmakar P; Murshed M; Paul M; Taubman D, 2023, An efficient video coding with object-bounded motion estimation using cuboid-based variable-sized block partitioning, http://dx.doi.org/10.21203/rs.3.rs-3302367/v1

Karmakar P; Murshed M; Paul M; Taubman D, 2022, Efficient Motion Modelling with Variable-sized blocks from Hierarchical Cuboidal Partitioning, http://arxiv.org/abs/2208.13137v1

Gray JL; Naman AT; Taubman DS, 2021, Welsch Based Multiview Disparity Estimation, http://dx.doi.org/10.1109/ICIP42928.2021.9506766

Ahmmed A; Paul M; Murshed M; Taubman D, 2021, Human-Machine Collaborative Video Coding Through Cuboidal Partitioning, http://dx.doi.org/10.31224/osf.io/v7y2r

Ahmmed A; Paul M; Murshed M; Taubman D, 2021, Human-Machine Collaborative Video Coding Through Cuboidal Partitioning, http://dx.doi.org/10.48550/arxiv.2102.01307

Young SI; Zhe W; Taubman D; Girod B, 2020, Transform Quantization for CNN (Convolutional Neural Network) Compression, http://dx.doi.org/10.1109/TPAMI.2021.3084839

Kitaeff VV; Cannon A; Wicenec A; Taubman D, 2014, Astronomical Imagery: Considerations For a Contemporary Approach with JPEG2000, http://arxiv.org/abs/1403.2801v4

Kitaeff S; Wicenec A; Wu C; Taubman D, 2013, Extremely Large Images: Considerations for Contemporary Approach, http://arxiv.org/abs/1307.5123v1


Back to profile page