Select Publications
Preprints
2022, Optimisation of electrically-driven multi-donor quantum dot qubits, http://dx.doi.org/10.48550/arxiv.2203.16553
,2021, Quasiparticle band-gap renormalization in doped monolayer MoS$_2$, http://dx.doi.org/10.48550/arxiv.2108.10599
,2021, Unidirectional valley-contrasting photo-current in strained transition metal dichalcogenide monolayers, http://dx.doi.org/10.48550/arxiv.2108.10438
,2021, Unidirectional magneto-transport of linearly dispersing topological edge states, http://dx.doi.org/10.48550/arxiv.2108.05378
,2021, Geometric control of universal hydrodynamic flow in a two dimensional electron fluid, http://dx.doi.org/10.48550/arxiv.2103.09463
,2021, Roadmap on quantum nanotechnologies, http://dx.doi.org/10.48550/arxiv.2101.07882
,2020, Generating a topological anomalous Hall effect in a non-magnetic conductor, http://dx.doi.org/10.1103/PhysRevLett.126.256601
,2020, Anomalous plasmon mode in strained Weyl semimetals, http://dx.doi.org/10.48550/arxiv.2009.06289
,2020, Ultrafast coherent control of a hole spin qubit in a germanium quantum dot, http://dx.doi.org/10.48550/arxiv.2006.12340
,2019, Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits, http://dx.doi.org/10.48550/arxiv.1911.11143
,2019, Transport in two-dimensional topological materials: recent developments in experiment and theory, http://dx.doi.org/10.48550/arxiv.1907.10058
,2019, Non-linear spin filter for non-magnetic materials at zero magnetic field, http://dx.doi.org/10.48550/arxiv.1907.01312
,2019, Signatures of quantum mechanical Zeeman effect in classical transport due to topological properties of two-dimensional spin-3/2 holes, http://dx.doi.org/10.48550/arxiv.1906.11439
,2019, Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 tri-layer heterostructures, http://dx.doi.org/10.48550/arxiv.1904.10588
,2019, Sign change in the anomalous Hall effect and strong transport effects in a 2D massive Dirac metal due to spin-charge correlated disorder, http://dx.doi.org/10.1103/PhysRevLett.123.126603
,2018, Engineering long spin coherence times of spin-orbit systems, http://dx.doi.org/10.48550/arxiv.1809.10859
,2018, Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction, http://dx.doi.org/10.48550/arxiv.1807.10415
,2018, Electrical control of the Zeeman spin splitting in two-dimensional hole systems, http://dx.doi.org/10.48550/arxiv.1806.10817
,2018, Theory of Hole-Spin Qubits in Strained Germanium Quantum Dots, http://dx.doi.org/10.48550/arxiv.1803.10320
,2018, Impact of valley phase and splitting on readout of silicon spin qubits, http://dx.doi.org/10.48550/arxiv.1803.01811
,2017, Strong influence of spin-orbit coupling on magnetotransport in two-dimensional hole systems, http://dx.doi.org/10.48550/arxiv.1708.07247
,2017, Integrated silicon qubit platform with single-spin addressability, exchange control and robust single-shot singlet-triplet readout, http://dx.doi.org/10.48550/arxiv.1708.03445
,2017, Entanglement control and magic angles for acceptor qubits in Si, http://dx.doi.org/10.48550/arxiv.1706.08858
,2016, Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot, http://dx.doi.org/10.48550/arxiv.1612.01062
,2016, Spin blockade as a probe of Zeeman interactions in hole quantum dots, http://dx.doi.org/10.48550/arxiv.1610.02119
,2016, An electrically driven spin qubit based on valley mixing, http://dx.doi.org/10.48550/arxiv.1608.02189
,2016, Quantum Computing with Acceptor Spins in Silicon, http://dx.doi.org/10.48550/arxiv.1606.04697
,2016, Spin-orbit interactions in inversion-asymmetric 2D hole systems: a variational analysis, http://dx.doi.org/10.48550/arxiv.1604.08759
,2015, Charge-insensitive single-atom spin-orbit qubit in silicon, http://dx.doi.org/10.48550/arxiv.1508.04259
,2014, Charge noise, spin-orbit coupling, and coherence of single-spin qubits, http://dx.doi.org/10.48550/arxiv.1408.4123
,2013, Coulomb interaction and valley-orbit coupling in Si quantum dots, http://dx.doi.org/10.48550/arxiv.1308.2728
,2011, Valley-based noise-resistant quantum computation using Si quantum dots, http://dx.doi.org/10.48550/arxiv.1107.0003
,