Select Publications

Preprints

Froyland G, 2024, A tutorial on the dynamic Laplacian, http://arxiv.org/abs/2408.04149v1

Badza A; Froyland G, 2024, Identifying the onset and decay of quasi-stationary families of almost-invariant sets with an application to atmospheric blocking events, http://dx.doi.org/10.48550/arxiv.2407.07278

Atnip J; Froyland G; Koltai P, 2024, An inflated dynamic Laplacian to track the emergence and disappearance of semi-material coherent sets, http://arxiv.org/abs/2403.10360v1

Atnip J; Froyland G; González-Tokman C; Quas A, 2023, Universal Gap Growth for Lyapunov Exponents of Perturbed Matrix Products, http://arxiv.org/abs/2312.03181v1

Atnip J; Froyland G; González-Tokman C; Vaienti S, 2023, Compound Poisson statistics for dynamical systems via spectral perturbation, http://arxiv.org/abs/2308.10798v2

Unanue ADD; Froyland G; Junge O; Koltai P, 2023, A dynamic $p$-Laplacian, http://dx.doi.org/10.48550/arxiv.2308.05947

Froyland G; Giannakis D; Luna E; Slawinska J, 2023, Revealing trends and persistent cycles of non-autonomous systems with operator-theoretic techniques: Applications to past and present climate dynamics, http://arxiv.org/abs/2308.04045v1

Atnip J; Froyland G; Gonzalez-Tokman C; Vaienti S, 2023, Thermodynamic Formalism and Perturbation Formulae for Quenched Random Open Dynamical Systems, http://arxiv.org/abs/2307.00774v2

Atnip J; Froyland G; Gonzalez-Tokman C; Vaienti S, 2022, Perturbation formulae for quenched random dynamics with applications to open systems and extreme value theory, http://arxiv.org/abs/2206.02471v1

Denes MC; Froyland G; Keating SR, 2021, Persistence and material coherence of a mesoscale ocean eddy, http://dx.doi.org/10.48550/arxiv.2111.08351

Abernathey R; Bladwell C; Froyland G; Sakellariou K, 2021, Deep Lagrangian connectivity in the global ocean inferred from Argo floats, http://dx.doi.org/10.48550/arxiv.2108.00683

Atnip J; Froyland G; González-Tokman C; Vaienti S, 2021, Equilibrium states for non-transitive random open and closed dynamical systems, http://dx.doi.org/10.48550/arxiv.2107.03776

Froyland G; Giannakis D; Lintner B; Pike M; Slawinska J, 2021, Spectral analysis of climate dynamics with operator-theoretic approaches, http://dx.doi.org/10.48550/arxiv.2104.02902

Froyland G; Koltai P, 2021, Detecting the birth and death of finite-time coherent sets, http://dx.doi.org/10.48550/arxiv.2103.16286

Atnip J; Froyland G; González-Tokman C; Vaienti S, 2021, Thermodynamic Formalism for Random Interval Maps with Holes, http://dx.doi.org/10.48550/arxiv.2103.04712

Antown F; Froyland G; Galatolo S, 2021, Optimal linear response for Markov Hilbert-Schmidt integral operators and stochastic dynamical systems, http://dx.doi.org/10.48550/arxiv.2101.09411

Beyn W-J; Froyland G; Hüls T, 2020, Angular values of nonautonomous and random linear dynamical systems: Part I -- Fundamentals, http://dx.doi.org/10.48550/arxiv.2012.11305

Atnip J; Froyland G; González-Tokman C; Vaienti S, 2020, Thermodynamic Formalism for Random Weighted Covering Systems, http://dx.doi.org/10.48550/arxiv.2002.11421

Antown F; Froyland G; Junge O, 2019, Linear response for the dynamic Laplacian and finite-time coherent sets, http://dx.doi.org/10.48550/arxiv.1907.10852

Schilling N; Froyland G; Junge O, 2019, Higher-Order Finite Element Approximation of the Dynamic Laplacian, http://dx.doi.org/10.48550/arxiv.1906.07634

Crimmins H; Froyland G, 2019, Fourier approximation of the statistical properties of Anosov maps on tori, http://dx.doi.org/10.48550/arxiv.1906.04905

Froyland G; Koltai P; Stahn M, 2019, Computation and optimal perturbation of finite-time coherent sets for aperiodic flows without trajectory integration, http://dx.doi.org/10.48550/arxiv.1902.09263

Dragičević D; Froyland G; González-Tokman C; Vaienti S, 2018, A spectral approach for quenched limit theorems for random hyperbolic dynamical systems, http://dx.doi.org/10.48550/arxiv.1812.07340

Froyland G; Rock CP; Sakellariou K, 2018, Sparse eigenbasis approximation: multiple feature extraction across spatiotemporal scales with application to coherent set identification, http://dx.doi.org/10.48550/arxiv.1812.02787

Crimmins H; Froyland G, 2018, Stability and approximation of statistical limit laws for multidimensional piecewise expanding maps, http://dx.doi.org/10.48550/arxiv.1808.09524

Miron P; Beron-Vera F; Olascoaga M; Froyland G; Perez-Brunius P; Sheinbaum J, 2018, Lagrangian geography of the deep Gulf of Mexico, http://dx.doi.org/10.48550/arxiv.1804.06843

Antown F; Dragičević D; Froyland G, 2018, Optimal linear responses for Markov chains and stochastically perturbed dynamical systems, http://dx.doi.org/10.48550/arxiv.1801.03234

Froyland G; Junge O, 2017, Robust FEM-based extraction of finite-time coherent sets using scattered, sparse, and incomplete trajectories, http://dx.doi.org/10.48550/arxiv.1705.03640

Dragicevic D; Froyland G; Gonzalez-Tokman C; Vaienti S, 2017, A spectral approach for quenched limit theorems for random expanding dynamical systems, http://dx.doi.org/10.48550/arxiv.1705.02130

Hadjighasem A; Farazmand M; Blazevski D; Froyland G; Haller G, 2017, A Critical Comparison of Lagrangian Methods for Coherent Structure Detection, http://dx.doi.org/10.48550/arxiv.1704.05716

Miron P; Beron-Vera FJ; Olascoaga MJ; Sheinbaum J; Perez-Brunius P; Froyland G, 2017, Lagrangian dynamical geography of the Gulf of Mexico, http://dx.doi.org/10.48550/arxiv.1703.10684

Froyland G; González-Tokman C; Quas A, 2017, Hilbert Space Lyapunov Exponent stability, http://dx.doi.org/10.48550/arxiv.1703.04841

Dragicevic D; Froyland G; González-Tokman C; Vaienti S, 2016, Almost sure invariance principle for random piecewise expanding maps, http://dx.doi.org/10.48550/arxiv.1611.04003

Froyland G; Kwok E, 2016, A dynamic Laplacian for identifying Lagrangian coherent structures on weighted Riemannian manifolds, http://dx.doi.org/10.48550/arxiv.1610.01128

Froyland G; Santitissadeekorn N, 2016, Optimal mixing enhancement, http://dx.doi.org/10.48550/arxiv.1610.01651

Dragičević D; Froyland G, 2016, Hölder continuity of Oseledets splittings for semi-invertible operator cocycles, http://dx.doi.org/10.48550/arxiv.1603.01421

Froyland G; Koltai P, 2015, Estimating long-term behavior of periodically driven flows without trajectory integration, http://dx.doi.org/10.48550/arxiv.1511.07272

Froyland G; Junge O, 2015, On fast computation of finite-time coherent sets using radial basis functions, http://dx.doi.org/10.48550/arxiv.1505.05056

Froyland G; Padberg-Gehle K, 2015, A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data, http://dx.doi.org/10.48550/arxiv.1505.04583

Froyland G; Gottwald GA; Hammerlindl A, 2014, A trajectory-free framework for analysing multiscale systems, http://dx.doi.org/10.48550/arxiv.1412.7268

Froyland G, 2014, Dynamic isoperimetry and the geometry of Lagrangian coherent structures, http://dx.doi.org/10.48550/arxiv.1411.7186

Froyland G; Gottwald GA; Hammerlindl A, 2013, A computational method to extract macroscopic variables and their dynamics in multiscale systems, http://dx.doi.org/10.48550/arxiv.1310.8001

Froyland G; González-Tokman C; Quas A, 2013, Stochastic stability of Lyapunov exponents and Oseledets splittings for semi-invertible matrix cocycles, http://dx.doi.org/10.48550/arxiv.1310.2398

Froyland G; González-Tokman C; Quas A, 2012, Stability and approximation of random invariant densities for Lasota-Yorke map cocycles, http://dx.doi.org/10.48550/arxiv.1212.2247

Froyland G, 2012, An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems, http://dx.doi.org/10.48550/arxiv.1210.7418

Bose C; Froyland G; González-Tokman C; Murray R, 2012, Ulam's method for Lasota-Yorke maps with holes, http://dx.doi.org/10.48550/arxiv.1204.2329

Froyland G; Hüls T; Morriss GP; Watson TM, 2012, Computing covariant vectors, Lyapunov vectors, Oseledets vectors, and dichotomy projectors: a comparative numerical study, http://dx.doi.org/10.48550/arxiv.1204.0871

Froyland G; Stancevic O, 2011, Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems, http://dx.doi.org/10.48550/arxiv.1106.1954

Froyland G; Junge O; Koltai P, 2011, Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach, http://dx.doi.org/10.48550/arxiv.1101.4166

Froyland G; Murray R; Stancevic O, 2010, Spectral degeneracy and escape dynamics for intermittent maps with a hole, http://dx.doi.org/10.48550/arxiv.1012.2149


Back to profile page