ORCID as entered in ROS

Select Publications
Hallett N; Yi K; Dick J; Hodge C; Sutton G; Wang YG; You J, 2020, Deep Learning Based Unsupervised and Semi-supervised Classification for Keratoconus
Dick J; Hinrichs A; Pillichshammer F, 2020, A note on the periodic $L_2$-discrepancy of Korobov's $p$-sets
Dick J; Hinrichs A; Pillichshammer F; Prochno J, 2019, Tractability properties of the discrepancy in Orlicz norms
Dick J; Pillichshammer F; Suzuki K; Ullrich M; Yoshiki T, 2017, Digital net properties of a polynomial analogue of Frolov's construction
Dick J; Gantner RN; Gia QTL; Schwab C, 2016, Multilevel higher order Quasi-Monte Carlo Bayesian Estimation
Dick J; Pillichshammer F; Suzuki K; Ullrich M; Yoshiki T, 2016, Lattice based integration algorithms: Kronecker sequences and rank-1 lattices
Dick J; Irrgeher C; Leobacher G; Pillichshammer F, 2016, On the optimal order of integration in Hermite spaces with finite smoothness
Dick J; Hinrichs A; Markhasin L; Pillichshammer F, 2016, Discrepancy of second order digital sequences in function spaces with dominating mixed smoothness
Dick J; Gantner RN; Gia QTL; Schwab C, 2016, Higher order Quasi-Monte Carlo integration for Bayesian Estimation
Dick J; Hinrichs A; Markhasin L; Pillichshammer F, 2016, Optimal $L_p$-discrepancy bounds for second order digital sequences
Dick J; Gomez-Perez D; Pillichshammer F; Winterhof A, 2015, Digital inversive vectors can achieve strong polynomial tractability for the weighted star discrepancy and for multivariate integration
Dick J; Kuo FY; Gia QTL; Schwab C, 2015, Fast QMC matrix-vector multiplication
Dick J; Kritzer P; Leobacher G; Pillichshammer F, 2014, Numerical integration in $\log$-Korobov and $\log$-cosine spaces
Dick J; Gia QTL; Schwab C, 2014, Higher Order Quasi Monte-Carlo Integration in Uncertainty Quantification
Dick J; Gia QTL; Schwab C, 2014, Higher order Quasi-Monte Carlo integration for holomorphic, parametric operator equations
Brauchart JS; Dick J; Fang L, 2014, Spatial low-discrepancy sequences, spherical cone discrepancy, and applications in financial modeling
Brauchart JS; Dick J; Saff EB; Sloan IH; Wang YG; Womersley RS, 2014, Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces
Dick J; Kuo F; Gia QTL; Schwab C, 2014, Multi-level higher order QMC Galerkin discretization for affine parametric operator equations
Dick J; Kritzer P; Leobacher G; Pillichshammer F, 2014, A reduced fast component-by-component construction of lattice points for integration in weighted spaces with fast decreasing weights
Dick J; Hinrichs A; Pillichshammer F, 2014, Proof Techniques in Quasi-Monte Carlo Theory
Dick J; Kuo FY; Gia QTL; Nuyens D; Schwab C, 2013, Higher order QMC Galerkin discretization for parametric operator equations
Dick J; Kritzer P; Pillichshammer F; Woźniakowski H, 2012, Approximation of analytic functions in Korobov spaces
Dick J; Nuyens D; Pillichshammer F, 2012, Lattice rules for nonperiodic smooth integrands
Aistleitner C; Brauchart J; Dick J, 2011, Point sets on the sphere $\mathbb{S}^2$ with small spherical cap discrepancy
Baldeaux J; Dick J; Leobacher G; Nuyens D; Pillichshammer F, 2011, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules
Brauchart JS; Dick J, 2011, Quasi-Monte Carlo rules for numerical integration over the unit sphere $\mathbb{S}^2$
Brauchart JS; Dick J, 2011, A simple Proof of Stolarsky's Invariance Principle
Baldeaux J; Dick J, 2010, A Construction of Polynomial Lattice Rules with Small Gain Coefficients