Select Publications
Journal articles
2024, 'Deciphering platinum dissolution in neural stimulation electrodes: Electrochemistry or biology?', Biomaterials, 309, http://dx.doi.org/10.1016/j.biomaterials.2024.122575
,2024, 'Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings', Advanced Science, 11, http://dx.doi.org/10.1002/advs.202306275
,2024, 'Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models', Biomaterials Science, 12, pp. 3522 - 3549, http://dx.doi.org/10.1039/d4bm00317a
,2023, 'Emerging trends in the development of flexible optrode arrays for electrophysiology', APL Bioengineering, 7, http://dx.doi.org/10.1063/5.0153753
,2023, 'Growing human-scale scala tympani-like in vitro cell constructs', Biofabrication, 15, pp. 035014, http://dx.doi.org/10.1088/1758-5090/accfc0
,2023, 'Effect of Hydrogel-based Model Fibrosis on Electrical Properties of Bioelectrodes', Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, http://dx.doi.org/10.1109/EMBC40787.2023.10340104
,2023, 'Validation of a platinum bioelectrode model for preclinical electrical and biological performance evaluation', Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, http://dx.doi.org/10.1109/EMBC40787.2023.10340761
,2022, 'Impedance Properties of Multi-Optrode Biopotential Sensing Arrays', IEEE Transactions on Biomedical Engineering, 69, pp. 1674 - 1684, http://dx.doi.org/10.1109/TBME.2021.3126849
,2021, 'Improving Deep Brain Stimulation Electrode Performance in vivo Through Use of Conductive Hydrogel Coatings', Frontiers in Neuroscience, 15, pp. 761525, http://dx.doi.org/10.3389/fnins.2021.761525
,2021, 'Challenges and solutions for fabrication of three-dimensional cocultures of neural cell-loaded biomimetic constructs', Biointerphases, 16, pp. 011202, http://dx.doi.org/10.1116/6.0000700
,2020, 'Subthreshold Electrical Stimulation for Controlling Protein-Mediated Impedance Increases in Platinum Cochlear Electrode', IEEE Transactions on Biomedical Engineering, 67, pp. 3510 - 3520, http://dx.doi.org/10.1109/TBME.2020.2989754
,2020, 'Electrochemical and biological performance of chronically stimulated conductive hydrogel electrodes', Journal of Neural Engineering, 17, pp. 026018, http://dx.doi.org/10.1088/1741-2552/ab7cfc
,2020, 'Erratum: A Neuroethics Framework for the Australian Brain Initiative (Neuron (2019) 101(3) (365–369), (S0896627319300054), (10.1016/j.neuron.2019.01.004))', Neuron, 105, pp. 201, http://dx.doi.org/10.1016/j.neuron.2019.12.019
,2020, 'Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt-Ir coated electrodes: An active in vitro study', Journal of Neural Engineering, 17, pp. 016015, http://dx.doi.org/10.1088/1741-2552/ab5163
,2019, 'An Improved in vitro Model of Cortical Tissue', Frontiers in Neuroscience, 13, pp. 1349, http://dx.doi.org/10.3389/fnins.2019.01349
,2019, 'Tissue engineered hydrogels supporting 3D neural networks', Acta Biomaterialia, 95, pp. 269 - 284, http://dx.doi.org/10.1016/j.actbio.2018.11.044
,2019, 'A Neuroethics Framework for the Australian Brain Initiative', Neuron, 101, pp. 365 - 369, http://dx.doi.org/10.1016/j.neuron.2019.01.004
,2019, 'Development and performance of a biomimetic artificial perilymph for in vitro testing of medical devices', Journal of Neural Engineering, 16, pp. 026006, http://dx.doi.org/10.1088/1741-2552/aaf482
,2018, 'Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes', Journal of Polymer Science, Part B: Polymer Physics, 56, pp. 273 - 287, http://dx.doi.org/10.1002/polb.24558
,2017, 'A living electrode construct for incorporation of cells into bionic devices', MRS Communications, 7, pp. 487 - 495, http://dx.doi.org/10.1557/mrc.2017.44
,2017, 'Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes', Advanced Healthcare Materials, 6, http://dx.doi.org/10.1002/adhm.201601177
,2016, 'Mechanisms for Imparting Conductivity to Nonconductive Polymeric Biomaterials', Macromolecular Bioscience, pp. 1103 - 1121, http://dx.doi.org/10.1002/mabi.201600057
,2016, 'A critical review of cell culture strategies for modelling intracortical brain implant material reactions', Biomaterials, 91, pp. 23 - 43, http://dx.doi.org/10.1016/j.biomaterials.2016.03.011
,2016, 'A comparative study of enzyme initiators for crosslinking phenol-functionalized hydrogels for cell encapsulation.', Biomaterials Research, 20, pp. 30 - 41, http://dx.doi.org/10.1186/s40824-016-0077-z
,2015, 'Bioactivity of permselective PVA hydrogels with mixed ECM analogues', Journal of Biomedical Materials Research - Part A, 103, pp. 3727 - 3735, http://dx.doi.org/10.1002/jbm.a.35510
,2015, 'Promoting Cell Survival and Proliferation in Degradable Poly(vinyl alcohol)-Tyramine Hydrogels', Macromolecular Bioscience, 15, pp. 1423 - 1432, http://dx.doi.org/10.1002/mabi.201500121
,2015, 'In vivo delivery of functional Flightless i siRNA using layer-by-layer polymer surface modification', Journal of Biomaterials Applications, 30, pp. 257 - 268, http://dx.doi.org/10.1177/0885328215579422
,2015, 'Small bioactive molecules as dual functional co-dopants for conducting polymers', Journal of Materials Chemistry B, 3, pp. 5058 - 5069, http://dx.doi.org/10.1039/c5tb00384a
,2015, 'Understanding and tailoring the degradation of PVA-tyramine hydrogels', Journal of Applied Polymer Science, 132, http://dx.doi.org/10.1002/app.42142
,2015, 'Bioactivity of permselective PVA hydrogels with mixed ECM analogues', Journal of Biomedical Materials Research - Part A, http://dx.doi.org/10.1002/jbm.a.35510
,2015, 'Mediating conducting polymer growth within hydrogels by controlling nucleation', APL Materials, 3, http://dx.doi.org/10.1063/1.4904820
,2015, 'Promoting Cell Survival and Proliferation in Degradable Poly(vinyl alcohol)-Tyramine Hydrogels', Macromolecular Bioscience, http://dx.doi.org/10.1002/mabi.201500121
,2014, 'Structural and permeability characterization of biosynthetic PVA hydrogels designed for cell-based therapy', Journal of Biomaterials Science, Polymer Edition, 25, pp. 1771 - 1790, http://dx.doi.org/10.1080/09205063.2014.950033
,2014, 'Platelet interactions with polyurethane nanocomposites: Effect of organic modifier terminal functionality', Materials Technology, 29, pp. B114 - B119, http://dx.doi.org/10.1179/1753555714Y.0000000151
,2014, 'Organic electrode coatings for next-generation neural interfaces', Frontiers in Neuroengineering, 7, pp. 15, http://dx.doi.org/10.3389/fneng.2014.00015
,2014, 'Stiffness quantification of conductive polymers for bioelectrodes', Journal of Polymer Science, Part B: Polymer Physics, 52, pp. 666 - 675, http://dx.doi.org/10.1002/polb.23465
,2014, 'Conductive hydrogels with tailored bioactivity for implantable electrode coatings', Acta Biomaterialia, 10, pp. 1216 - 1226, http://dx.doi.org/10.1016/j.actbio.2013.12.032
,2014, 'Correlation of macromolecular permeability to network characteristics of multivinyl poly(vinyl alcohol) hydrogels', Journal of Polymer Science, Part B: Polymer Physics, 52, pp. 63 - 72, http://dx.doi.org/10.1002/polb.23397
,2014, 'Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes', Journal of Biomedical Materials Research - Part A, 102, pp. 2743 - 2754, http://dx.doi.org/10.1002/jbm.a.34945
,2014, 'Improving cochlear implant properties through conductive hydrogel coatings', IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22, pp. 411 - 418, http://dx.doi.org/10.1109/TNSRE.2014.2304559
,2014, 'The biological and electrical trade-offs related to the thickness of conducting polymers for neural applications', Acta Biomaterialia, 10, pp. 3048 - 3058, http://dx.doi.org/10.1016/j.actbio.2014.04.004
,2014, 'The biological and electrical trade-offs related to the thickness of conducting polymers for neural applications', Acta Biomaterialia, http://dx.doi.org/10.1016/j.actbio.2014.04.004
,2013, 'Erratum: Thin film hydrophilic electroactive polymer coatings for bioelectrodes (Journal of Materials Chemistry B (2013) DOI:10.1039/C3TB20152J)', Journal of Materials Chemistry B, 1, pp. 6670, http://dx.doi.org/10.1039/c3tb90147e
,2013, 'Mechanical characteristics of swollen gellan gum hydrogels', Journal of Applied Polymer Science, 130, pp. 3374 - 3383, http://dx.doi.org/10.1002/app.39583
,2013, 'Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation', Biomicrofluidics, 7, http://dx.doi.org/10.1063/1.4816714
,2013, 'Thin film hydrophilic electroactive polymer coatings for bioelectrodes (vol 1, pg 3803, 2013)', JOURNAL OF MATERIALS CHEMISTRY B, 1, pp. 6670 - 6670, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000327499100013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2013, 'Effects of drug chemistry on the dispersion and release behaviour of polyurethane organosilicate nanocomposites', European Polymer Journal, 49, pp. 652 - 663, http://dx.doi.org/10.1016/j.eurpolymj.2012.11.014
,2012, 'Substrate dependent stability of conducting polymer coatings on medical electrodes', Biomaterials, 33, pp. 5875 - 5886, http://dx.doi.org/10.1016/j.biomaterials.2012.05.017
,2012, 'Challenges of therapeutic delivery using conducting polymers', Therapeutic Delivery, 3, pp. 421 - 427, http://dx.doi.org/10.4155/TDE.12.19
,2012, 'Conductive Hydrogels: Mechanically Robust Hybrids for Use as Biomaterials', Macromolecular Bioscience, 12, pp. 494 - 501, http://dx.doi.org/10.1002/mabi.201100490
,