Select Publications
Journal articles
2024, 'Biologicals and Biomaterials for Corneal Regeneration and Vision Restoration in Limbal Stem Cell Deficiency', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202401763
,2024, 'A detailed survey of the murine limbus, its stem cell distribution, and its boundaries with the cornea and conjunctiva', Stem Cells Translational Medicine, 13, pp. 1015 - 1027, http://dx.doi.org/10.1093/stcltm/szae055
,2024, 'Development and characterization of a preclinical mouse model of alkali-induced limbal stem cell deficiency', Ocular Surface, 34, pp. 329 - 340, http://dx.doi.org/10.1016/j.jtos.2024.08.015
,2024, 'Knowledge, views and experiences of Australian optometrists in relation to ocular stem cell therapies', Clinical and Experimental Optometry, 107, pp. 754 - 762, http://dx.doi.org/10.1080/08164622.2022.2102409
,2023, 'A Bioengineering-Regenerative Medicine Approach for Ocular Surface Reconstruction Using a Functionalized Native Cornea-Derived Bio-Scaffold', Advanced Functional Materials, 33, http://dx.doi.org/10.1002/adfm.202304856
,2023, 'Limbal Epithelial Stem Cells in the Diabetic Cornea', Cells, 12, http://dx.doi.org/10.3390/cells12202458
,2023, 'Cell identity changes in ocular surface Epithelia', Progress in Retinal and Eye Research, 95, http://dx.doi.org/10.1016/j.preteyeres.2022.101148
,2023, 'The multifunctional human ocular melanocortin system', Progress in Retinal and Eye Research, 95, http://dx.doi.org/10.1016/j.preteyeres.2023.101187
,2023, 'Pathogenesis of Alkali Injury-Induced Limbal Stem Cell Deficiency: A Literature Survey of Animal Models', Cells, 12, http://dx.doi.org/10.3390/cells12091294
,2023, 'Type 2 diabetes influences intraepithelial corneal nerve parameters and corneal stromal-epithelial nerve penetration sites', Journal of Diabetes Investigation, 14, pp. 591 - 601, http://dx.doi.org/10.1111/jdi.13974
,2023, 'Synergic Action of Insulin-like Growth Factor-2 and miRNA-483 in Pterygium Pathogenesis', International Journal of Molecular Sciences, 24, http://dx.doi.org/10.3390/ijms24054329
,2022, 'Honorary authorship in health sciences: a protocol for a systematic review of survey research', Systematic Reviews, 11, http://dx.doi.org/10.1186/s13643-022-01928-1
,2022, 'Plasticity of ocular surface epithelia: Using a murine model of limbal stem cell deficiency to delineate metaplasia and transdifferentiation', Stem Cell Reports, 17, pp. 2451 - 2466, http://dx.doi.org/10.1016/j.stemcr.2022.09.011
,2022, 'Longitudinal Characterization of Phagocytic and Neutralization Functions of Anti-Spike Antibodies in Plasma of Patients after Severe Acute Respiratory Syndrome Coronavirus 2 Infection', Journal of Immunology, 209, pp. 1499 - 1512, http://dx.doi.org/10.4049/jimmunol.2200272
,2022, 'Identification of presumed corneal neuromas and microneuromas using laser-scanning in vivo confocal microscopy: A systematic review', British Journal of Ophthalmology, 106, pp. 765 - 771, http://dx.doi.org/10.1136/bjophthalmol-2020-318156
,2022, 'The role of topical N-acetylcysteine in ocular therapeutics', Survey of Ophthalmology, 67, pp. 608 - 622, http://dx.doi.org/10.1016/j.survophthal.2021.07.008
,2022, 'Physical, functional and biochemical features of Nanoskin® bacterial cellulose scaffold as a potential carrier for cell transference', Materials Letters, 308, http://dx.doi.org/10.1016/j.matlet.2021.131109
,2022, 'Evaluating the clinical translational relevance of animal models for limbal stem cell deficiency: A systematic review', Ocular Surface, 23, pp. 169 - 183, http://dx.doi.org/10.1016/j.jtos.2021.09.006
,2022, 'Use of High-Refractive Index Hydrogels and Tissue Clearing for Large Biological Sample Imaging', Gels, 8, http://dx.doi.org/10.3390/gels8010032
,2021, '“Eyeing” corneal stem cell identity, dynamics, and compartmentalization', Cell Stem Cell, 28, pp. 1181 - 1183, http://dx.doi.org/10.1016/j.stem.2021.06.001
,2021, 'Inducing dry eye disease using a custom engineered desiccation system: Impact on the ocular surface including keratin-14-positive limbal epithelial stem cells', Ocular Surface, 21, pp. 145 - 159, http://dx.doi.org/10.1016/j.jtos.2021.04.006
,2021, 'Neuronal-epithelial cell alignment: A determinant of health and disease status of the cornea', Ocular Surface, 21, pp. 257 - 270, http://dx.doi.org/10.1016/j.jtos.2021.03.007
,2020, 'Corneal Epithelial "Neuromas": A Case of Mistaken Identity?', Cornea, 39, pp. 930 - 934, http://dx.doi.org/10.1097/ICO.0000000000002294
,2020, 'Origin and Lineage Plasticity of Endogenous Lacrimal Gland Epithelial Stem/Progenitor Cells', iScience, 23, http://dx.doi.org/10.1016/j.isci.2020.101230
,2020, 'Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease', Ocular Surface, 18, pp. 158 - 169, http://dx.doi.org/10.1016/j.jtos.2019.11.006
,2019, 'Peripheral (not central) corneal epithelia contribute to the closure of an annular debridement injury', Proceedings of the National Academy of Sciences of the United States of America, 116, pp. 26633 - 26643, http://dx.doi.org/10.1073/pnas.1912260116
,2019, 'Epha2 genotype influences ultraviolet radiation induced cataract in mice', Experimental Eye Research, 188, http://dx.doi.org/10.1016/j.exer.2019.107806
,2019, 'Insulin-like growth factor binding protein-7: A marker of conjunctivalization in an animal model of limbal stem cell deficiency', Ocular Surface, 17, pp. 447 - 457, http://dx.doi.org/10.1016/j.jtos.2019.05.005
,2019, 'Visualizing the Contribution of Keratin-14+ Limbal Epithelial Precursors in Corneal Wound Healing', Stem Cell Reports, 12, pp. 14 - 28, http://dx.doi.org/10.1016/j.stemcr.2018.11.014
,2018, 'The current state of stem cell therapy for ocular disease', Experimental Eye Research, 177, pp. 65 - 75, http://dx.doi.org/10.1016/j.exer.2018.07.019
,2018, 'Incidence, clinical features and diagnosis of cicatrising conjunctivitis in Australia and New Zealand', Eye (Basingstoke), 32, pp. 1636 - 1643, http://dx.doi.org/10.1038/s41433-018-0155-7
,2018, 'Visualizing the Fate of Transplanted K14-Confetti Corneal Epithelia in a Mouse Model of Limbal Stem Cell Deficiency', Investigative ophthalmology & visual science, 59, pp. 1630 - 1640, http://dx.doi.org/10.1167/iovs.17-23557
,2018, 'Native and synthetic scaffolds for limbal epithelial stem cell transplantation', Acta Biomaterialia, 65, pp. 21 - 35, http://dx.doi.org/10.1016/j.actbio.2017.10.037
,2017, 'Keratin-14-Positive Precursor Cells Spawn a Population of Migratory Corneal Epithelia that Maintain Tissue Mass throughout Life', Stem Cell Reports, 9, pp. 1081 - 1096, http://dx.doi.org/10.1016/j.stemcr.2017.08.015
,2017, 'Damaging Effects of Ultraviolet Radiation on the Cornea', Photochemistry and Photobiology, 93, pp. 920 - 929, http://dx.doi.org/10.1111/php.12686
,2017, 'Epidemiology of bacterial conjunctivitis in chinchillas (Chinchilla lanigera): 49 cases (2005 to 2015)', Journal of Small Animal Practice, 58, pp. 238 - 245, http://dx.doi.org/10.1111/jsap.12644
,2017, 'Nature and incidence of severe limbal stem cell deficiency in Australia and New Zealand', Clinical and Experimental Ophthalmology, 45, pp. 174 - 181, http://dx.doi.org/10.1111/ceo.12813
,2017, 'Curcuma longa is able to induce apoptotic cell death of pterygium-derived human keratinocytes', BioMed Research International, 2017, pp. 2956597, http://dx.doi.org/10.1155/2017/2956597
,2016, 'Renewal of the Holocrine Meibomian Glands by Label-Retaining, Unipotent Epithelial Progenitors', Stem Cell Reports, 7, pp. 399 - 410, http://dx.doi.org/10.1016/j.stemcr.2016.07.010
,2016, 'S100A8 and S100A9 proteins are expressed by human corneal stromal dendritic cells', British Journal of Ophthalmology, 100, pp. 1304 - 1308, http://dx.doi.org/10.1136/bjophthalmol-2016-308827
,2016, 'Self-organized centripetal movement of corneal epithelium in the absence of external cues', Nature Communications, 7, http://dx.doi.org/10.1038/ncomms12388
,2016, 'Keratin 14 expression in epithelial progenitor cells of the developing human cornea', Stem Cells and Development, 25, pp. 699 - 711, http://dx.doi.org/10.1089/scd.2016.0039
,2016, 'Fate Mapping Mammalian Corneal Epithelia', Ocular Surface, 14, pp. 82 - 99, http://dx.doi.org/10.1016/j.jtos.2015.11.007
,2016, 'Contamination of primary human corneal epithelial cells with an SV40-transformed human corneal epithelial cell line: A lesson for cell biologists in good laboratory practice', Investigative Ophthalmology and Visual Science, 57, pp. 611 - 616, http://dx.doi.org/10.1167/iovs.15-18783
,2016, 'Contact lenses: A delivery device for stem cells to treat corneal blindness', Optometry and Vision Science, 93, pp. 412 - 418, http://dx.doi.org/10.1097/OPX.0000000000000699
,2016, 'Expert views on innovative future uses for contact lenses', Optometry and Vision Science, 93, pp. 328 - 335, http://dx.doi.org/10.1097/OPX.0000000000000700
,2015, 'Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells', Progress in Retinal and Eye Research, 48, pp. 203 - 225, http://dx.doi.org/10.1016/j.preteyeres.2015.04.002
,2015, 'Ultrasensitive and Specific Measurement of Protease Activity Using Functionalized Photonic Crystals', Analytical Chemistry, 87, pp. 9946 - 9953, http://dx.doi.org/10.1021/acs.analchem.5b02529
,2015, 'Clinical outcomes of xeno-free expansion and transplantation of autologous ocular surface epithelial stem cells via contact lens delivery: A prospective case series', Stem Cell Research and Therapy, 6, http://dx.doi.org/10.1186/s13287-015-0009-1
,2015, 'Tracing the fate of limbal epithelial progenitor cells in the murine cornea', Stem Cells, 33, pp. 157 - 169, http://dx.doi.org/10.1002/stem.1769
,