ORCID as entered in ROS

Select Publications
2022, A correlated pseudo-marginal approach to doubly intractable problems, , http://dx.doi.org/10.48550/arxiv.2210.02734
,2022, Modularized Bayesian analyses and cutting feedback in likelihood-free inference, , http://dx.doi.org/10.48550/arxiv.2203.09782
,2021, An Introduction to Quantum Computing for Statisticians and Data Scientists, , http://dx.doi.org/10.48550/arxiv.2112.06587
,2021, A new model of unreported COVID-19 cases outperforms three known epidemic-growth models in describing data from Cuba and Spain, , http://dx.doi.org/10.1101/2021.06.29.21259707
,2021, Modelling age-related changes in executive functions of soccer players, , http://dx.doi.org/10.48550/arxiv.2105.01226
,2020, Hidden Group Time Profiles: Heterogeneous Drawdown Behaviours in Retirement, , http://dx.doi.org/10.48550/arxiv.2009.01505
,2020, Likelihood-based inference for modelling packet transit from thinned flow summaries, , http://dx.doi.org/10.48550/arxiv.2008.13424
,2020, Stressor equivalents: A framework to prevent perverse outcomes in data-poor systems, , http://dx.doi.org/10.22541/au.159283264.49749008
,2019, Logistic regression models for aggregated data, , http://dx.doi.org/10.48550/arxiv.1912.03805
,2019, Multiclass classification of growth curves using random change points and heterogeneous random effects, , http://dx.doi.org/10.48550/arxiv.1909.07550
,2019, Efficient Bayesian synthetic likelihood with whitening transformations, , http://dx.doi.org/10.48550/arxiv.1909.04857
,2019, Composite likelihood methods for histogram-valued random variables, , http://dx.doi.org/10.48550/arxiv.1908.11548
,2019, High-dimensional inference using the extremal skew-$t$ process, , http://dx.doi.org/10.48550/arxiv.1907.10187
,2019, Likelihood-free approximate Gibbs sampling, , http://dx.doi.org/10.48550/arxiv.1906.04347
,2019, Estimation and uncertainty quantification for extreme quantile regions, , http://dx.doi.org/10.48550/arxiv.1904.08251
,2019, Vector operations for accelerating expensive Bayesian computations -- a tutorial guide, , http://dx.doi.org/10.48550/arxiv.1902.09046
,2018, Extremal properties of the multivariate extended skew-normal distribution, , http://dx.doi.org/10.48550/arxiv.1810.00680
,2018, Variance reduction properties of the reparameterization trick, , http://dx.doi.org/10.48550/arxiv.1809.10330
,2018, New models for symbolic data analysis, , http://dx.doi.org/10.48550/arxiv.1809.03659
,2018, Efficient data augmentation for multivariate probit models with panel data: An application to general practitioner decision-making about contraceptives, , http://dx.doi.org/10.48550/arxiv.1806.07274
,2018, Extremal properties of the univariate extended skew-normal distribution, , http://dx.doi.org/10.48550/arxiv.1805.03316
,2018, High-dimensional ABC, , http://dx.doi.org/10.48550/arxiv.1802.09725
,2017, Estimating global species richness using symbolic data meta-analysis, , http://dx.doi.org/10.48550/arxiv.1711.03202
,2017, Recalibration: A post-processing method for approximate Bayesian computation, , http://dx.doi.org/10.48550/arxiv.1704.06374
,2016, Variational Bayes with Synthetic Likelihood, , http://dx.doi.org/10.48550/arxiv.1608.03069
,2016, Constructing Likelihood Functions for Interval-valued Random Variables, , http://dx.doi.org/10.48550/arxiv.1608.00107
,2016, Exploratory data analysis for moderate extreme values using non-parametric kernel methods, , http://dx.doi.org/10.48550/arxiv.1602.08807
,2015, Models for extremal dependence derived from skew-symmetric families, , http://dx.doi.org/10.48550/arxiv.1507.00108
,2015, Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model, , http://dx.doi.org/10.48550/arxiv.1504.04093
,2014, Functional regression approximate Bayesian computation for Gaussian process density estimation, , http://dx.doi.org/10.48550/arxiv.1410.8276
,2013, Diagnostic tools of approximate Bayesian computation using the coverage property, , http://dx.doi.org/10.48550/arxiv.1301.3166
,2012, Approximate Bayesian Computation via Regression Density Estimation, , http://dx.doi.org/10.48550/arxiv.1212.1479
,2012, Simultaneous adjustment of bias and coverage probabilities for confidence intervals, , http://dx.doi.org/10.48550/arxiv.1210.3405
,2012, A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation, , http://dx.doi.org/10.48550/arxiv.1202.3819
,2011, Approximate Bayesian computation and Bayes linear analysis: Towards high-dimensional ABC, , http://dx.doi.org/10.48550/arxiv.1112.4755
,2010, Bayesian Symbol Detection in Wireless Relay Networks via Likelihood-Free Inference, , http://dx.doi.org/10.48550/arxiv.1007.4603
,2010, Adaptive Optimal Scaling of Metropolis-Hastings Algorithms Using the Robbins-Monro Process, , http://dx.doi.org/10.48550/arxiv.1006.3690
,2010, A note on target distribution ambiguity of likelihood-free samplers, , http://dx.doi.org/10.48550/arxiv.1005.5201
,2009, On Bayesian Curve Fitting Via Auxiliary Variables, , http://dx.doi.org/10.48550/arxiv.0911.1894
,2009, Likelihood-based inference for max-stable processes, , http://dx.doi.org/10.48550/arxiv.0902.3060
,Bayesian Inference, Monte Carlo Sampling and Operational Risk., , http://dx.doi.org/10.2139/ssrn.2980407
,Dynamic Quantile Function Models, , http://dx.doi.org/10.2139/ssrn.2999451
,Likelihood-Free Bayesian Inference for -Stable Models, , http://dx.doi.org/10.2139/ssrn.2980440
,