Select Publications
Books
2019, Preface, http://dx.doi.org/10.1016/B978-0-12-815862-3.00006-8
,2017, Handbook of Approximate Bayesian Computation, Chapman & Hall
,Book Chapters
2020, 'Chapter 1 Bayesian quantile regression with the asymmetric Laplace distribution', in Flexible Bayesian Regression Modelling, Elsevier, pp. 1 - 25, http://dx.doi.org/10.1016/b978-0-12-815862-3.00007-x
,2020, 'Preface', in Flexible Bayesian Regression Modelling, Elsevier, pp. xiii - xiv, http://dx.doi.org/10.1016/b978-0-12-815862-3.00006-8
,2019, 'Bayesian quantile regression with the asymmetric Laplace distribution', in Flexible bayesian regression modelling, Academic Press, pp. 1 - 25, http://dx.doi.org/10.1016/B978-0-12-815862-3.00007-X
,2018, 'High-Dimensional ABC', in Handbook of Approximate Bayesian Computation, Chapman and Hall/CRC, pp. 211 - 241, http://dx.doi.org/10.1201/9781315117195-8
,2018, 'ABC Samplers', in Sisson S; Fan Y; Beaumont M (ed.), Handbook of Approximate Bayesian Computation, Chapman & Hall, pp. 87 - 123, http://dx.doi.org/10.1201/9781315117195-4
,2018, 'High-dimensional approximate Bayesian computation', in Sisson S; Fan Y; Beaumont M (ed.), Handbook of Approximate Bayesian Computation, Chapman & Hall, pp. 211 - 242
,2018, 'Overview of Approximate Bayesian Computation', in Sisson S; Fan Y; Beaumont M (ed.), Handbook of Approximate Bayesian Computation, Chapman & Hall, pp. 3 - 54, https://www.amazon.com/Handbook-Approximate-Computation-Handbooks-Statistical/dp/1439881502
,2018, 'ABC in nuclear imaging', in Fan Y; Sisson SA; Beaumont M (ed.), Handbook of approximate bayesian computation, CRC Press, https://www.crcpress.com/Handbook-of-Approximate-Bayesian-Computation/Sisson-Fan-Beaumont/p/book/9781439881507
,2011, 'Likelihood-free MCMC', in Brooks S; Gelman A; Jones GL; Meng X-L (ed.), Handbook of Markov Chain Monte Carlo, Taylor and Francis Group, USA, pp. 313 - 333
,2011, 'Reversible Jump MCMC', in Brooks S; Gelman A; Jones GL; Meng X-L (ed.), Handbook of Markov Chain Monte Carlo, Taylor and Francis Group, USA, pp. 67 - 87
,Edited Books
Fan Y; Nott D; Dortet-Bernadet J-L; Smith M, (eds.), 2019, Flexible Bayesian Regression Modelling, Academic Press
Sisson S; Fan Y; Beaumont M, (eds.), 2018, Handbook of Approximate Bayesian Computation, Chapman and Hall/CRC Press, https://www.crcpress.com/Handbook-of-Approximate-Bayesian-Computation/Sisson-Fan-Beaumont/p/book/9781439881507
Journal articles
2024, 'Bias intervention messaging in student evaluations of teaching: The role of gendered perceptions of bias', Heliyon, 10, http://dx.doi.org/10.1016/j.heliyon.2024.e37140
,2024, 'A topic model analysis of students' gendered expectations using surveyed critiques of lecturers', Frontiers in Education, 9, http://dx.doi.org/10.3389/feduc.2024.1296771
,2024, 'Bayesian L
2023, 'A synthetic likelihood approach for intractable markov random fields', Computational Statistics, 38, pp. 749 - 777, http://dx.doi.org/10.1007/s00180-022-01256-x
,2022, 'Cell graph neural networks enable the precise prediction of patient survival in gastric cancer', npj Precision Oncology, 6, http://dx.doi.org/10.1038/s41698-022-00285-5
,2022, 'APPROXIMATE EQUIVARIANCE SO(3) NEEDLET CONVOLUTION', Proceedings of Topological, Algebraic, and Geometric Learning Workshops (ICML 2022), 196, pp. 189 - 198
,2022, 'Gender Bias in Student Evaluations of Teaching: ‘Punish[ing] Those Who Fail To Do Their Gender Right’', Higher Education, 83, pp. 787 - 807, http://dx.doi.org/10.1007/s10734-021-00704-9
,2022, 'Probabilistic Projections of El Niño Southern Oscillation Properties Accounting for Model Dependence and Skill', Scientific Reports, http://dx.doi.org/10.1038/s41598-022-26513-3
,2021, 'A novel approach for discovering stochastic models behind data applied to El Niño–Southern Oscillation', Scientific Reports, 11, http://dx.doi.org/10.1038/s41598-021-81162-2
,2021, 'A flexible data-driven cyclostationary model for the probability density of El Niño-Southern Oscillation', Chaos, 31, http://dx.doi.org/10.1063/5.0060104
,2021, 'A Markov chain method for weighting climate model ensembles', Geoscientific Model Development, 14, pp. 3539 - 3551, http://dx.doi.org/10.5194/gmd-14-3539-2021
,2021, 'PET-ABC: Fully Bayesian likelihood-free inference for kinetic models', Physics in Medicine and Biology, 66, pp. 115002, http://dx.doi.org/10.1088/1361-6560/abfa37
,2020, 'CosmoVAE: Variational Autoencoder for CMB Image Inpainting', IEEE Proceedings of the International Joint Conference on Neural Networks (IJCNN)
,2020, 'Haar Graph Pooling', Proceedings of international conference on machine learning (ICML), 119, pp. 9952 - 9962, http://proceedings.mlr.press/v119/wang20m.html
,2019, 'A novel method to test non-exclusive hypotheses applied to Arctic ice projections from dependent models', Nature Communications, 10, pp. 3016, http://dx.doi.org/10.1038/s41467-019-10561-x
,2019, 'Simultaneous fitting of Bayesian penalised quantile splines', Computational Statistics and Data Analysis, 134, pp. 93 - 109, http://dx.doi.org/10.1016/j.csda.2018.12.009
,2019, 'Pyramid Quantile Regression', Journal of Computational and Graphical Statistics, 28, pp. 1 - 25, http://dx.doi.org/10.1080/10618600.2019.1575225
,2019, 'Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series', PLoS ONE, 14, pp. e0214535, http://dx.doi.org/10.1371/journal.pone.0214535
,2019, 'Gender and cultural bias in student evaluations: Why representation matters', PLoS ONE, 14, http://dx.doi.org/10.1371/journal.pone.0209749
,2019, 'A review of Approximate Bayesian Computation methods via density estimation: inference for simulator-models', WIREs Computational Statistics, e1486, http://dx.doi.org/10.1002/wics.1486
,2018, 'North Atlantic observations sharpen meridional overturning projections', Climate Dynamics, 50, pp. 4171 - 4188, http://dx.doi.org/10.1007/s00382-017-3867-7
,2018, 'A Novel Approach for Markov Random Field With Intractable Normalizing Constant on Large Lattices', Journal of Computational and Graphical Statistics, 27, pp. 59 - 70, http://dx.doi.org/10.1080/10618600.2017.1317263
,2017, 'A Bayesian posterior predictive framework for weighting ensemble regional climate models', Geoscientific Model Development, 10, pp. 2321 - 2332, http://dx.doi.org/10.5194/gmd-10-2321-2017
,2017, 'Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model', Computational Statistics and Data Analysis, 106, pp. 77 - 89, http://dx.doi.org/10.1016/j.csda.2016.07.005
,2017, 'A Bayesian posterior predictive framework for weighting ensemble regional climate models', , http://dx.doi.org/10.5194/gmd-2016-291
,2017, 'Multivariate nonparametric test of independence', Journal of Multivariate Analysis, 153, pp. 189 - 210, http://dx.doi.org/10.1016/j.jmva.2016.09.014
,2016, 'Adaptive optimal scaling of Metropolis–Hastings algorithms using the Robbins–Monro process', Communications in Statistics - Theory and Methods, 45, pp. 5098 - 5111, http://dx.doi.org/10.1080/03610926.2014.936562
,2016, 'A simple method for Bayesian model averaging of regional climate model projections: Application to southeast Australian temperatures', Geophysical Research Letters, 43, pp. 7661 - 7669, http://dx.doi.org/10.1002/2016GL069704
,2016, 'Regression adjustment for noncrossing Bayesian quantile regression', Journal of Computational and Graphical Statistics, http://dx.doi.org/10.1080/10618600.2016.1172016
,2016, 'A Bayesian spatial temporal mixtures approach to kinetic parametric images in dynamic positron emission tomography', Medical Physics, 43, pp. 1222 - 1234, http://dx.doi.org/10.1118/1.4941010
,2016, 'Relabelling algorithms for mixture models with applications for large data sets', Journal of Statistical Computation and Simulation, 86, pp. 394 - 413, http://dx.doi.org/10.1080/00949655.2015.1015129
,2015, 'Bayesian threshold selection for extremal models using measures of surprise', Computational Statistics and Data Analysis, 85, pp. 84 - 99, http://dx.doi.org/10.1016/j.csda.2014.12.004
,2014, 'Approximate Bayesian computation and Bayes' linear analysis: Toward high- dimensional ABC', Journal of Computational and Graphical Statistics, 23, pp. 65 - 86, http://dx.doi.org/10.1080/10618600.2012.751874
,2014, 'Simultaneous adjustment of bias and coverage probabilities for confidence intervals', Computational Statistics and Data Analysis, 70, pp. 35 - 44, http://dx.doi.org/10.1016/j.csda.2013.08.016
,2013, 'Approximate Bayesian computation via regression density estimation', Stat, 2, pp. 34 - 48, http://dx.doi.org/10.1002/sta4.15
,2012, 'Discussion on the paper of Fearnhead and Prangle "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation"', Journal of the Royal Statistical Society Series B - Statistical Methodology, 74, pp. 466 - 468
,