Site Maintenance will take place from 4:00 PM on 2024-04-29 to 9:00 AM on 2024-05-01.
Please do not make any content change during this time, otherwise all the changes will be lost.

Select Publications

Book Chapters

Jin MH-C; Durstock M; Dai L, 2006, 'Chapter 17 Optical limiters and photovoltaic devices based on C60, carbon nanotubes and their nanocomposites', in Carbon Nanotechnology, Elsevier, pp. 611 - 631, http://dx.doi.org/10.1016/b978-044451855-2/50020-6

Qu L; Lee KM; Dai L, 2006, 'Chapter 8 Functionalization and applications of carbon nanotubes', in Carbon Nanotechnology, Elsevier, pp. 191 - 234, http://dx.doi.org/10.1016/b978-044451855-2/50011-5

Dai L; He P, 2005, 'Carbon Nanotube Biosensors', in Biomedical and Biological Nanotechnology - Vol. 1 of The Handbook of Biomems and Bio-nanotechnology, pp. 175 - 205

Dai L; Qu LT; Li LC; Bajpai V; Shi GQ, 2005, 'Conducting Polymer and Carbon Mesoporous Structures by Electrochemical Synthesis', in Studies in Surface Science and Catalysis, pp. 505 - 516

Dai L; Aussawasathien D; He P, 2005, 'Polymer Nanofibres and Polymer Sheathed Carbon Nanotubes for Sensors', in Polymer Nanofibres

Dai L; Jin MH-C, 2005, 'Vertically Aligned Carbon Nanotubes for Organic Photovoltaic Devices', in Organic Photovoltaics

Dai L, 2004, 'Polymer Nanostructures', in Encyclopedia of Nanoscience and Nanotechnology, Amer Scientific Pub, pp. 763 - 790

Dai L; Reneker DH, 2003, 'Polymer Nanowires and Nanofibers', in Nanowires and Nanobelts, Springer US, pp. 269 - 288, http://dx.doi.org/10.1007/978-0-387-28747-8_15

Dai L, 2002, 'From Conducting Polymers to Carbon Nanotubes: New Horizons in Plastic Microelectronics and Carbon Nanoelectronics', in Perspectives of Fullerene Nanotechnology, Springer Netherlands, pp. 93 - 111, http://dx.doi.org/10.1007/978-94-010-9598-3_9

Dai L; Zientek P; St John H; Pasic P; Chatelier RC; Griesser HJ, 1996, 'Covalently Attached Thin Coatings Comprising Saccharide and Alkylene Oxide Segments', in Surface Modification of Polymeric Biomaterials, pp. 147 - 156, http://dx.doi.org/10.1007/978-1-4899-1953-3_17

Dai L, 'From Conducting Polymers to Carbon Nanotubes: New Horizons in Plastic Microelectronics and Carbon Nanoelectronics', in Perspectives of Fullerene Nanotechnology, Kluwer Academic Publishers, pp. 93 - 111, http://dx.doi.org/10.1007/0-306-47621-5_9

Edited Books

Dai L, 2018, Preface, http://dx.doi.org/10.1002/9783527811458

Zhi C; Dai L, 2018, Flexible Energy Conversion and Storage Devices, John Wiley & Sons

Lu W; Baek JB; Dai L, 2015, Preface, http://dx.doi.org/10.1002/9781118980989

Dai L; Zhang M; Naik RR, (eds.), 2015, Carbon Nanomaterials for Biomedical Applications, Springer, http://dx.doi.org/10.1007/978-3-319-22861-7

Dai L, 2006, Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications, http://dx.doi.org/10.1016/B978-0-444-51855-2.X5000-1

Dai L, (ed.), 2004, Intelligent Macromolecules for Smart Devices: from Materials Synthesis to Device Applications, Springer-Verlag, Berlin

Journal articles

Liu D; Shi L; Dai Q; Lin X; Mehmood R; Gu Z; Dai L, 2024, 'Functionalization of carbon nanotubes for multifunctional applications', Trends in Chemistry, 6, pp. 186 - 210, http://dx.doi.org/10.1016/j.trechm.2024.02.002

Sun M; Ge R; Li S; Dai L; Li Y; Liu B; Li W, 2024, 'The component-activity interrelationship of cobalt-based bifunctional electrocatalysts for overall water splitting: strategies and performance', Journal of Energy Chemistry, 91, pp. 453 - 474, http://dx.doi.org/10.1016/j.jechem.2023.12.033

Lin X; Zhang X; Liu D; Shi L; Zhao L; Long Y; Dai L, 2024, 'Asymmetric Atomic Tin Catalysts with Tailored p-Orbital Electron Structure for Ultra-Efficient Oxygen Reduction', Advanced Energy Materials, 14, http://dx.doi.org/10.1002/aenm.202303740

Tang J; Christofferson AJ; Sun J; Zhai Q; Kumar PV; Yuwono JA; Tajik M; Meftahi N; Tang J; Dai L; Mao G; Russo SP; Kaner RB; Rahim MA; Kalantar-Zadeh K, 2024, 'Dynamic configurations of metallic atoms in the liquid state for selective propylene synthesis', Nature Nanotechnology, 19, pp. 306 - 310, http://dx.doi.org/10.1038/s41565-023-01540-x

Ao X; Li L; Yun SY; Deng Y; Yoon W; Wang P; Jin X; Dai L; Wang C; Hwang SJ, 2023, 'Highly accessible dual-metal atomic pairs for enhancing oxygen redox reaction in zinc−air batteries', Nano Energy, 118, http://dx.doi.org/10.1016/j.nanoen.2023.108952

Liu H; Zhang Y; Li J; Ge R; Cairney JM; Zheng R; Li S; Liu B; Dai L; Liao T; Li W, 2023, 'Ultra-thin carbon layer encapsulated NiCoP coralline-like catalysts for efficient overall water electrolysis', Journal of Materials Chemistry A, 12, pp. 5100 - 5114, http://dx.doi.org/10.1039/d3ta05366k

Kim C; Park SO; Kwak SK; Xia Z; Kim G; Dai L, 2023, 'Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-41397-1

Zhu J; Li J; Lu R; Yu R; Zhao S; Li C; Lv L; Xia L; Chen X; Cai W; Meng J; Zhang W; Pan X; Hong X; Dai Y; Mao Y; Li J; Zhou L; He G; Pang Q; Zhao Y; Xia C; Wang Z; Dai L; Mai L, 2023, 'Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-40342-6

Ye F; Zhang S; Cheng Q; Long Y; Liu D; Paul R; Fang Y; Su Y; Qu L; Dai L; Hu C, 2023, 'The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-37679-3

Su H; Nilghaz A; Liu D; Dai L; Tian J; Razal JM; Tang K; Li J, 2023, 'Harnessing the power of water: A review of hydroelectric nanogenerators', Nano Energy, 116, http://dx.doi.org/10.1016/j.nanoen.2023.108819

Yang X; Cheng F; Yang Z; Ka O; Wen L; Wang X; Liu S; Lu W; Dai L, 2023, 'Multifunctionalizing electrolytes in situ for lithium metal batteries', Nano Energy, 116, http://dx.doi.org/10.1016/j.nanoen.2023.108825

Liu H; Zhang Y; Ge R; Cairney JM; Zheng R; Khan A; Li S; Liu B; Dai L; Li W, 2023, 'Tailoring the electronic structure of Ni5P4/Ni2P catalyst by Co2P for efficient overall water electrolysis', Applied Energy, 349, http://dx.doi.org/10.1016/j.apenergy.2023.121582

Zhou Y; Zhang H; Wang Y; Wan T; Guan P; Zhou X; Wang X; Chen Y; Shi H; Dou A; Su M; Guo R; Liu Y; Dai L; Chu D, 2023, 'Relieving Stress Concentration through Anion-Cation Codoping toward Highly Stable Nickel-Rich Cathode', ACS Nano, 17, pp. 20621 - 20633, http://dx.doi.org/10.1021/acsnano.3c07655

Zhang W; Huang R; Yan X; Tian C; Xiao Y; Lin Z; Dai L; Guo Z; Chai L, 2023, 'Carbon Electrode Materials for Advanced Potassium‐Ion Storage', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202308891

Liu H; Li J; Zhang Y; Ge R; Yang J; Li Y; Zhang J; Zhu M; Li S; Liu B; Dai L; Li W, 2023, 'Boosted water electrolysis capability of NixCoyP via charge redistribution and surface activation', Chemical Engineering Journal, 473, http://dx.doi.org/10.1016/j.cej.2023.145397

Wang Y; Ma J; Cao X; Chen S; Dai L; Zhang J, 2023, 'Bionic Mineralization toward Scalable MOF Films for Ampere-Level Biomass Upgrading', Journal of the American Chemical Society, 145, pp. 20624 - 20633, http://dx.doi.org/10.1021/jacs.3c07790

Li Y; Chen J; Ji Y; Zhao Z; Cui W; Sang X; Cheng Y; Yang B; Li Z; Zhang Q; Lei L; Wen Z; Dai L; Hou Y, 2023, 'Single-atom Iron Catalyst with Biomimetic Active Center to Accelerate Proton Spillover for Medical-level Electrosynthesis of H2O2 Disinfectant', Angewandte Chemie - International Edition, 62, http://dx.doi.org/10.1002/anie.202306491

Li Y; Chen J; Ji Y; Zhao Z; Cui W; Sang X; Cheng Y; Yang B; Li Z; Zhang Q; Lei L; Wen Z; Dai L; Hou Y, 2023, 'Single‐atom Iron Catalyst with Biomimetic Active Center to Accelerate Proton Spillover for Medical‐level Electrosynthesis of H2O2Disinfectant', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202306491

Zheng X; Chen S; Li J; Wu H; Zhang C; Zhang D; Chen X; Gao Y; He F; Hui L; Liu H; Jiu T; Wang N; Li G; Xu J; Xue Y; Huang C; Chen C; Guo Y; Lu TB; Wang D; Mao L; Zhang J; Zhang Y; Chi L; Guo W; Bu XH; Zhang H; Dai L; Zhao Y; Li Y, 2023, 'Two-Dimensional Carbon Graphdiyne: Advances in Fundamental and Application Research', ACS Nano, 17, pp. 14309 - 14346, http://dx.doi.org/10.1021/acsnano.3c03849

Tynan B; Zhou Y; Brown SA; Dai L; Rider AN; Wang CH, 2023, 'Structural supercapacitor electrodes for energy storage by electroless deposition of MnO2 on carbon nanotube mats', Composites Science and Technology, 238, http://dx.doi.org/10.1016/j.compscitech.2023.110016

Xu X; Chen HC; Li L; Humayun M; Zhang X; Sun H; Debecker DP; Zhang W; Dai L; Wang C, 2023, 'Leveraging Metal Nodes in Metal-Organic Frameworks for Advanced Anodic Hydrazine Oxidation Assisted Seawater Splitting', ACS Nano, 17, pp. 10906 - 10917, http://dx.doi.org/10.1021/acsnano.3c02749

Gong L; Wang X; Daiyan R; Zhu X; Leverett J; Duan Z; Zhang L; Amal R; Dai L; Xia Z, 2023, 'Origin and predictive principle for selective products of electrocatalytic carbon dioxide reduction', Journal of Materials Chemistry A, 11, pp. 15359 - 15369, http://dx.doi.org/10.1039/d3ta00336a

Liu F; Shi L; Lin X; Zhang B; Long Y; Ye F; Yan R; Cheng R; Hu C; Liu D; Qiu J; Dai L, 2023, 'Fe/Co dual metal catalysts modulated by S-ligands for efficient acidic oxygen reduction in PEMFC', Science Advances, 9, http://dx.doi.org/10.1126/sciadv.adg0366

Yan J; Ye F; Dai Q; Ma X; Fang Z; Dai L; Hu C, 2023, 'Recent progress in carbon-based electrochemical catalysts: From structure design to potential applications', Nano Research Energy, 2, http://dx.doi.org/10.26599/NRE.2023.9120047

Zhai Q; Xia Z; Dai L, 2023, 'Unifying the origin of catalytic activities for carbon-based metal-free electrocatalysts', Catalysis Today, 418, http://dx.doi.org/10.1016/j.cattod.2023.114129

Zhang X; Lyu Y; Zhou H; Zheng J; Huang A; Ding J; Xie C; De Marco R; Tsud N; Kalinovych V; Jiang SP; Dai L; Wang S, 2023, 'Photoelectrochemical N2-to-NH3 Fixation with High Efficiency and Rates via Optimized Si-Based System at Positive Potential versus Li0/+', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202211894

Fang M; Wang M; Wang Z; Zhang Z; Zhou H; Dai L; Zhu Y; Jiang L, 2023, 'Hydrophobic, Ultrastable Cuδ+for Robust CO2Electroreduction to C2Products at Ampere-Current Levels', Journal of the American Chemical Society, 145, pp. 11323 - 11332, http://dx.doi.org/10.1021/jacs.3c02399

Su H; Nilghaz A; Liu D; Dai L; Tang B; Wang Z; Razal JM; Tian J; Li J, 2023, 'Self-operating seawater-driven electricity nanogenerator for continuous energy generation and storage', Chemical Engineering Journal Advances, 14, http://dx.doi.org/10.1016/j.ceja.2023.100498

Wang J; Kong J; Han Q; Chu Y; Luo Y; Zhang J; Dai L; Peng GD, 2023, 'Surfactant effect on DLP fabrication of silica fibre preforms', Ceramics International, 49, pp. 15689 - 15699, http://dx.doi.org/10.1016/j.ceramint.2023.01.161

Kim C; Talapaneni SN; Dai L, 2023, 'Porous carbon materials for CO2 capture, storage and electrochemical conversion', Materials Reports: Energy, 3, http://dx.doi.org/10.1016/j.matre.2023.100199

Xiang F; Cheng F; Sun Y; Yang X; Lu W; Amal R; Dai L, 2023, 'Recent advances in flexible batteries: From materials to applications', Nano Research, 16, pp. 4821 - 4854, http://dx.doi.org/10.1007/s12274-021-3820-2

Cui P; Zhao L; Long Y; Dai L; Hu C, 2023, 'Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction', Angewandte Chemie - International Edition, 62, http://dx.doi.org/10.1002/anie.202218269

Cui P; Zhao L; Long Y; Dai L; Hu C, 2023, 'Carbon‐Based Electrocatalysts for Acidic Oxygen Reduction Reaction', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202218269


Back to profile page