Select Publications

Journal articles

Jin H; Bu Y; Li J; Liu J; Fen X; Dai L; Wang J; Lu J; Wang S, 2018, 'Strong Graphene 3D Assemblies with High Elastic Recovery and Hardness', Advanced Materials, 30, http://dx.doi.org/10.1002/adma.201707424

Peng Y; Lin D; Justin Gooding J; Xue Y; Dai L; Gooding J, 2018, 'Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibres decorated with gold nanosheets', Carbon, 136, pp. 329 - 336, http://dx.doi.org/10.1016/j.carbon.2018.05.004

Li Y; Huang J; Hu X; Bi L; Cai P; Jia J; Chai G; Wei S; Dai L; Wen Z, 2018, 'Fe Vacancies Induced Surface FeO6 in Nanoarchitectures of N-Doped Graphene Protected β-FeOOH: Effective Active Sites for pH-Universal Electrocatalytic Oxygen Reduction', Advanced Functional Materials, 28, http://dx.doi.org/10.1002/adfm.201803330

Zhang Z; Sun J; Wang F; Dai L, 2018, 'Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework', Angewandte Chemie - International Edition, 57, pp. 9038 - 9043, http://dx.doi.org/10.1002/anie.201804958

Zhang Z; Sun J; Wang F; Dai L, 2018, 'Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework', Angewandte Chemie, 130, pp. 9176 - 9181, http://dx.doi.org/10.1002/ange.201804958

Paul R; Dai L, 2018, 'Interfacial aspects of carbon composites', Composite Interfaces, 25, pp. 539 - 605, http://dx.doi.org/10.1080/09276440.2018.1439632

Hu H; Tang Y; Hu Q; Wan P; Dai L; Yang XJ, 2018, 'In-situ grown nanoporous Zn-Cu catalysts on brass foils for enhanced electrochemical reduction of carbon dioxide', Applied Surface Science, 445, pp. 281 - 286, http://dx.doi.org/10.1016/j.apsusc.2018.03.146

Liu L; Zeng G; Chen J; Bi L; Dai L; Wen Z, 2018, 'N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices', Nano Energy, 49, pp. 393 - 402, http://dx.doi.org/10.1016/j.nanoen.2018.04.061

Cheng R; Ge C; Qi L; Zhang Z; Ma J; Huang H; Pan T; Dai Q; Dai L, 2018, 'Label-Free Graphene Oxide Förster Resonance Energy Transfer Sensors for Selective Detection of Dopamine in Human Serums and Cells', Journal of Physical Chemistry C, 122, pp. 13314 - 13321, http://dx.doi.org/10.1021/acs.jpcc.7b09256

Hu C; Xiao Y; Zou Y; Dai L, 2018, 'Correction to: Carbon-Based Metal-Free Electrocatalysis for Energy Conversion, Energy Storage, and Environmental Protection (Electrochemical Energy Reviews, (2018), 1, 1, (84-112), 10.1007/s41918-018-0003-2)', Electrochemical Energy Reviews, 1, pp. 238, http://dx.doi.org/10.1007/s41918-018-0005-0

Zhou Y; Fang J; Wang H; Zhou H; Yan G; Zhao Y; Dai L; Lin T, 2018, 'Multicolor Electrochromic Fibers with Helix-Patterned Electrodes', Advanced Electronic Materials, 4, http://dx.doi.org/10.1002/aelm.201800104

Pang X; Wang Q; Wan L; Dai L; Li H, 2018, 'Quality differences and its influence on glutenite reservoirs in the Ed3 of the northeast margin, Shanan sag, Bohai sea', Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 47, pp. 615 - 630

Xu Q; Su R; Chen Y; Sreenivasan ST; Li N; Zheng X; Zhu J; Pan H; Li W; Xu C; Xia Z; Dai L, 2018, 'Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence', ACS Applied Nano Materials, 1, pp. 1886 - 1893, http://dx.doi.org/10.1021/acsanm.8b00277

Ren G; Gao L; Teng C; Li Y; Yang H; Shui J; Lu X; Zhu Y; Dai L, 2018, 'Ancient Chemistry "pharaoh's Snakes" for Efficient Fe-/N-Doped Carbon Electrocatalysts', ACS Applied Materials and Interfaces, 10, pp. 10778 - 10785, http://dx.doi.org/10.1021/acsami.7b16936

Hu C; Liu D; Xiao Y; Dai L, 2018, 'Functionalization of graphene materials by heteroatom-doping for energy conversion and storage', Progress in Natural Science: Materials International, 28, pp. 121 - 132, http://dx.doi.org/10.1016/j.pnsc.2018.02.001

Zhang M; Dai Q; Zheng H; Chen M; Dai L, 2018, 'Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn–Air Batteries and Water Splitting', Advanced Materials, 30, http://dx.doi.org/10.1002/adma.201705431

Hu C; Xiao Y; Zou Y; Dai L, 2018, 'Carbon-Based Metal-Free Electrocatalysis for Energy Conversion, Energy Storage, and Environmental Protection', Electrochemical Energy Reviews, 1, pp. 84 - 112, http://dx.doi.org/10.1007/s41918-018-0003-2

Khalid M; Honorato AMB; Varela H; Dai L, 2018, 'Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes', Nano Energy, 45, pp. 127 - 135, http://dx.doi.org/10.1016/j.nanoen.2017.12.045

Yang J; Zheng J; Xu M; Zhuo Z; Yang W; Wang LW; Dai L; Lu J; Amine K; Pan F, 2018, 'Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity', ACS Catalysis, 8, pp. 466 - 473, http://dx.doi.org/10.1021/acscatal.7b02814

Lv J; Abbas SC; Huang Y; Liu Q; Wu M; Wang Y; Dai L, 2018, 'A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions', Nano Energy, 43, pp. 130 - 137, http://dx.doi.org/10.1016/j.nanoen.2017.11.020

Chen Y; Dai L; Ohno Y, 2018, 'Carbons for wearable devices - Commentary and introduction to the virtual special issue', Carbon, 126, pp. 621 - 623, http://dx.doi.org/10.1016/j.carbon.2017.09.079

Ghausi MA; Xie J; Li Q; Wang X; Yang R; Wu M; Wang Y; Dai L, 2018, 'CO2 Overall Splitting by a Bifunctional Metal‐Free Electrocatalyst', Angewandte Chemie, 130, pp. 13319 - 13323, http://dx.doi.org/10.1002/ange.201807571

Yan D; Li Y; Huo J; Chen R; Dai L; Wang S, 2017, 'Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions', Advanced Materials, 29, http://dx.doi.org/10.1002/adma.201606459

Meng FL; Wu JJ; Zhao EF; Zheng YZ; Huang ML; Dai LM; Tao X; Chen JF, 2017, 'High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals', Nanoscale, 9, pp. 18535 - 18545, http://dx.doi.org/10.1039/c7nr05416e

Lu K; Hu Z; Ma J; Ma H; Dai L; Zhang J, 2017, 'A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry', Nature Communications, 8, http://dx.doi.org/10.1038/s41467-017-00649-7

McCallum GA; Sui X; Qiu C; Marmerstein J; Zheng Y; Eggers TE; Hu C; Dai L; Durand DM, 2017, 'Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes', Scientific Reports, 7, pp. 11723, http://dx.doi.org/10.1038/s41598-017-10639-w

Zhang Y; Fan X; Jian J; Yu D; Zhang Z; Dai L, 2017, 'A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes', Energy and Environmental Science, 10, pp. 2312 - 2317, http://dx.doi.org/10.1039/c7ee01702b

Hu C; Chen X; Dai Q; Wang M; Qu L; Dai L, 2017, 'Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water', Nano Energy, 41, pp. 367 - 376, http://dx.doi.org/10.1016/j.nanoen.2017.09.029

Xu J; Mahmood J; Dou Y; Dou S; Li F; Dai L; Baek JB, 2017, '2D Frameworks of C2N and C3N as New Anode Materials for Lithium-Ion Batteries', Advanced Materials, 29, http://dx.doi.org/10.1002/adma.201702007

Nagelli EA; Huang L; Dai AQZ; Du F; Dai L, 2017, '3D Vertically Aligned CNT/Graphene Hybrids from Layer-by-Layer Transfer for Supercapacitors', Particle and Particle Systems Characterization, 34, http://dx.doi.org/10.1002/ppsc.201700131

Cheng R; Peng Y; Ge C; Bu Y; Liu H; Huang H; Ou S; Xue Y; Dai L, 2017, 'A turn-on fluorescent lysine nanoprobe based on the use of the Alizarin Red aluminum(III) complex conjugated to graphene oxide, and its application to cellular imaging of lysine', Microchimica Acta, 184, pp. 3521 - 3528, http://dx.doi.org/10.1007/s00604-017-2375-0

Dai L; Zhu H; Zhang C; Liu T; Wang Y, 2017, 'In vitro assessment of biodegradable and biocompatible brain-derived neurotrophic factor-mesenchymal stem cells incorporated chitosan/gelatin scaffold', Journal of Biomaterials and Tissue Engineering, 7, pp. 876 - 881, http://dx.doi.org/10.1166/jbt.2017.1627

Guo J; Li Y; Cheng Y; Dai L; Xiang Z, 2017, 'Highly Efficient Oxygen Reduction Reaction Electrocatalysts Synthesized under Nanospace Confinement of Metal-Organic Framework', ACS Nano, 11, pp. 8379 - 8386, http://dx.doi.org/10.1021/acsnano.7b03807

Wang D; Zhu L; Pu Y; Wang JX; Chen JF; Dai L, 2017, 'Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging', Nanoscale, 9, pp. 11214 - 11221, http://dx.doi.org/10.1039/c7nr03019c

Dai L, 2017, 'Carbon-based catalysts for metal-free electrocatalysis', Current Opinion in Electrochemistry, 4, pp. 18 - 25, http://dx.doi.org/10.1016/j.coelec.2017.06.004

Wen Y; Rufford TE; Chen X; Li N; Lyu M; Dai L; Wang L, 2017, 'Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors', Nano Energy, 38, pp. 368 - 376, http://dx.doi.org/10.1016/j.nanoen.2017.06.009

Wang H; Wang B; Bian Y; Dai L, 2017, 'Enhancing Photocatalytic Activity of Graphitic Carbon Nitride by Codoping with P and C for Efficient Hydrogen Generation', ACS Applied Materials and Interfaces, 9, pp. 21730 - 21737, http://dx.doi.org/10.1021/acsami.7b02445

Young MJ; Bedford NM; Jiang N; Lin D; Dai L, 2017, 'In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry', Journal of Synchrotron Radiation, 24, pp. 787 - 795, http://dx.doi.org/10.1107/S1600577517006282

Liu X; Li S; Zhao S; Guo L; Wang Y; Li X; Wang P; Sun W; Cao X; Dai L; Yu S; Zhang Z; Zang Y; Kong X; Zhang Y; Zheng Q, 2017, 'Structure of the Mariana subduction system', Earth Science Frontiers, 24, pp. 329 - 340, http://dx.doi.org/10.13745/j.esf.yx.2017-3-16

Qie L; Lin Y; Connell JW; Xu J; Dai L, 2017, 'Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode', Angewandte Chemie - International Edition, 56, pp. 6970 - 6974, http://dx.doi.org/10.1002/anie.201701826

Qie L; Lin Y; Connell JW; Xu J; Dai L, 2017, 'Highly Rechargeable Lithium‐CO2 Batteries with a Boron‐ and Nitrogen‐Codoped Holey‐Graphene Cathode', Angewandte Chemie, 129, pp. 7074 - 7078, http://dx.doi.org/10.1002/ange.201701826

Wang D; Wang Z; Zhan Q; Pu Y; Wang JX; Foster NR; Dai L, 2017, 'Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications', Engineering, 3, pp. 402 - 408, http://dx.doi.org/10.1016/J.ENG.2017.03.014

Huang L; Dai L, 2017, 'On-Chip Microsupercapacitors Based on Coordination Polymer Frameworks for Alternating Current Line-Filtering', Angewandte Chemie - International Edition, 56, pp. 6381 - 6383, http://dx.doi.org/10.1002/anie.201702868

Dai L; Feng X; Liu Z; Zhang H, 2017, 'Two-Dimensional Materials: A Powerful Platform for Energy Applications', ChemNanoMat, 3, pp. 338 - 339, http://dx.doi.org/10.1002/cnma.201700121

Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW, 2017, 'Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes', Nano Letters, 17, pp. 3252 - 3260, http://dx.doi.org/10.1021/acs.nanolett.7b00872

Chen X; Paul R; Dai L, 2017, 'Carbon-based supercapacitors for efficient energy storage', National Science Review, 4, pp. 453 - 489, http://dx.doi.org/10.1093/nsr/nwx009

Han Q; Cheng Z; Gao J; Zhao Y; Zhang Z; Dai L; Qu L, 2017, 'Mesh-on-Mesh Graphitic-C3N4@Graphene for Highly Efficient Hydrogen Evolution', Advanced Functional Materials, 27, http://dx.doi.org/10.1002/adfm.201606352

Xiao X; He CT; Zhao S; Li J; Lin W; Yuan Z; Zhang Q; Wang S; Dai L; Yu D, 2017, 'A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media', Energy and Environmental Science, 10, pp. 893 - 899, http://dx.doi.org/10.1039/c6ee03145e

Xu J; Jeon IY; Ma J; Dou Y; Kim SJ; Seo JM; Liu H; Dou S; Baek JB; Dai L, 2017, 'Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries', Nano Research, 10, pp. 1268 - 1281, http://dx.doi.org/10.1007/s12274-016-1383-4

Hu C; Dai L, 2017, 'Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution', Advanced Materials, 29, http://dx.doi.org/10.1002/adma.201604942


Back to profile page