Select Publications
Journal articles
2021, 'Editorial for Stuart Wenham Special Issue', Progress in Photovoltaics: Research and Applications, 29, pp. 1147 - 1148, http://dx.doi.org/10.1002/pip.3471
,2021, 'Systematic Efficiency Improvement for Cu
2021, 'Peer behaviour boosts recycling', Nature Energy, 6, pp. 862 - 863, http://dx.doi.org/10.1038/s41560-021-00905-7
,2021, 'Immediate and Temporal Enhancement of Power Conversion Efficiency in Surface-Passivated Perovskite Solar Cells', ACS Applied Materials and Interfaces, 13, pp. 39178 - 39185, http://dx.doi.org/10.1021/acsami.1c06878
,2021, 'Singlet fission and tandem solar cells reduce thermal degradation and enhance lifespan', Progress in Photovoltaics: Research and Applications, 29, pp. 899 - 906, http://dx.doi.org/10.1002/pip.3405
,2021, 'Solar cell efficiency tables (Version 58)', Progress in Photovoltaics: Research and Applications, 29, pp. 657 - 667, http://dx.doi.org/10.1002/pip.3444
,2021, 'Kesterite Solar Cells: Insights into Current Strategies and Challenges', Advanced Science, 8, pp. 2004313, http://dx.doi.org/10.1002/advs.202004313
,2021, 'High Efficiency Cu
2021, 'Elucidating Mechanisms behind Ambient Storage-Induced Efficiency Improvements in Perovskite Solar Cells', ACS Energy Letters, 6, pp. 925 - 933, http://dx.doi.org/10.1021/acsenergylett.0c02406
,2021, 'Defect-Resolved Effective Majority Carrier Mobility in Highly Anisotropic Antimony Chalcogenide Thin-Film Solar Cells', Solar RRL, 5, http://dx.doi.org/10.1002/solr.202000693
,2021, 'Enhanced hole-carrier selectivity in wide bandgap halide perovskite PV devices for indoor IoT applications', Advanced Functional Materials, pp. 2008908 - 2008908, http://dx.doi.org/10.1002/adfm.202008908
,2021, 'Kinetics of light-induced degradation in semi-transparent perovskite solar cells', Solar Energy Materials and Solar Cells, 219, http://dx.doi.org/10.1016/j.solmat.2020.110776
,2021, 'Optical and Thermal Emission Benefits of Differently Textured Glass for Photovoltaic Modules', IEEE Journal of Photovoltaics, 11, pp. 131 - 137, http://dx.doi.org/10.1109/JPHOTOV.2020.3033390
,2021, 'Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time-Resolved Microspectroscopy', Small Methods, 5, http://dx.doi.org/10.1002/smtd.202000731
,2021, 'Solar cell efficiency tables (version 57)', Progress in Photovoltaics: Research and Applications, 29, pp. 3 - 15, http://dx.doi.org/10.1002/pip.3371
,2021, 'Front Cover: Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time‐Resolved Microspectroscopy (Small Methods 1/2021)', Small Methods, 5, http://dx.doi.org/10.1002/smtd.202170001
,2020, '11.6% Efficient Pure Sulfide Cu(In,Ga)S
2020, 'Defect Control for 12.5% Efficiency Cu
2020, 'Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies', Materials Today, 41, pp. 120 - 142, http://dx.doi.org/10.1016/j.mattod.2020.09.002
,2020, 'Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency', Nature Energy, 5, pp. 587 - 595, http://dx.doi.org/10.1038/s41560-020-0652-3
,2020, 'Solar cell efficiency tables (version 56)', Progress in Photovoltaics: Research and Applications, 28, pp. 629 - 638, http://dx.doi.org/10.1002/pip.3303
,2020, 'Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells', Science, 368, http://dx.doi.org/10.1126/science.aba2412
,2020, 'Quasi-Vertically-Orientated Antimony Sulfide Inorganic Thin-Film Solar Cells Achieved by Vapor Transport Deposition', ACS Applied Materials and Interfaces, 12, pp. 22825 - 22834, http://dx.doi.org/10.1021/acsami.0c02697
,2020, 'Transparent Electrodes Consisting of a Surface-Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four-Terminal Tandem Applications', Small Methods, 4, http://dx.doi.org/10.1002/smtd.202000074
,2020, 'Evidence of Low-Temperature Joints in Silver Nanowire Based Transparent Conducting Layers for Solar Cells', ACS Applied Nano Materials, 3, pp. 3205 - 3213, http://dx.doi.org/10.1021/acsanm.9b02290
,2020, 'Integrated Photorechargeable Energy Storage System: Next-Generation Power Source Driving the Future', Advanced Energy Materials, 10, http://dx.doi.org/10.1002/aenm.201903930
,2020, 'Tracking solar cell conversion efficiency', Nature Reviews Physics, 2, pp. 172 - 173, http://dx.doi.org/10.1038/s42254-020-0163-y
,2020, 'Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammonium-Based Perovskite Solar Cells', Solar RRL, 4, http://dx.doi.org/10.1002/solr.201900463
,2020, 'Unveiling the Relationship between the Perovskite Precursor Solution and the Resulting Device Performance', Journal of the American Chemical Society, 142, pp. 6251 - 6260, http://dx.doi.org/10.1021/jacs.0c00411
,2020, 'Epitaxial growth of Cu
2020, 'Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long-Term Stable Perovskite Solar Cell', Advanced Science, 7, http://dx.doi.org/10.1002/advs.201903368
,2020, 'Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution', Nano Energy, 69, http://dx.doi.org/10.1016/j.nanoen.2019.104438
,2020, 'Grain Quality Engineering for Organic Metal Halide Perovskites Using Mixed Antisolvent Spraying Treatment', Solar RRL, 4, http://dx.doi.org/10.1002/solr.201900397
,2020, 'Solar cell efficiency tables (Version 55)', Progress in Photovoltaics: Research and Applications, 28, pp. 3 - 15, http://dx.doi.org/10.1002/pip.3228
,2020, 'Grain Quality Engineering for Organic Metal Halide Perovskites Using Mixed Antisolvent Spraying Treatment', Solar RRL, 4, http://dx.doi.org/10.1002/solr.202070012
,2020, 'Transparent Electrodes Consisting of a Surface‐Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four‐Terminal Tandem Applications (Small Methods 5/2020)', Small Methods, 4, http://dx.doi.org/10.1002/smtd.202070018
,2020, 'Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammonium‐Based Perovskite Solar Cells', Solar RRL, 4, http://dx.doi.org/10.1002/solr.202070043
,2019, 'Deconstruction-assisted perovskite formation for sequential solution processing of Cs
2019, 'Light- and bias-induced structural variations in metal halide perovskites', Nature Communications, 10, http://dx.doi.org/10.1038/s41467-019-08364-1
,2019, 'The potential and design principle for next-generation spectrum-splitting photovoltaics: Targeting 50% efficiency through built-in filters and generalization of concept', Progress in Photovoltaics: Research and Applications, 27, pp. 899 - 904, http://dx.doi.org/10.1002/pip.3081
,2019, 'Cd-Free Cu
2019, 'Fabrication of Efficient and Stable CsPbI
2019, 'Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells', Nano Energy, 63, http://dx.doi.org/10.1016/j.nanoen.2019.06.049
,2019, 'Pushing to the Limit: Radiative Efficiencies of Recent Mainstream and Emerging Solar Cells', ACS Energy Letters, 4, pp. 1639 - 1644, http://dx.doi.org/10.1021/acsenergylett.9b01128
,2019, 'Photovoltaic technology and visions for the future', Progress in Energy, 1, http://dx.doi.org/10.1088/2516-1083/ab0fa8
,2019, 'Solar cell efficiency tables (version 54)', Progress in Photovoltaics: Research and Applications, 27, pp. 565 - 575, http://dx.doi.org/10.1002/pip.3171
,2019, 'Laser-induced aluminium-assisted crystallization of Ge-rich Si
2019, 'Correction to: Strontium-doped low-temperature-processed CsPbI
2019, 'Design of an intermediate Bragg reflector within triple-junction solar cells for spectrum splitting applications', Solar Energy Materials and Solar Cells, 193, pp. 259 - 269, http://dx.doi.org/10.1016/j.solmat.2019.01.011
,2019, 'How Did Solar Cells Get So Cheap?', Joule, 3, pp. 631 - 633, http://dx.doi.org/10.1016/j.joule.2019.02.010
,