ORCID as entered in ROS

Select Publications
2023, 'Emergence of flexible kesterite solar cells: progress and perspectives', npj Flexible Electronics, 7, http://dx.doi.org/10.1038/s41528-023-00250-7
,2023, 'Barrier Strategy for Strain-Free Encapsulation of Perovskite Solar Cells.', J Phys Chem Lett, pp. 10754 - 10761, http://dx.doi.org/10.1021/acs.jpclett.3c02636
,2023, 'Bifacial and Semitransparent Sb
2023, 'Cd-Free Pure Sulfide Kesterite Cu2 ZnSnS4 Solar Cell with Over 800 mV Open-Circuit Voltage Enabled by Phase Evolution Intervention.', Adv Mater, pp. e2307733, http://dx.doi.org/10.1002/adma.202307733
,2023, 'Vortex Generators for Passive Cooling of Rooftop Photovoltaic Systems Under Free Convection', IEEE Journal of Photovoltaics, 13, pp. 743 - 749, http://dx.doi.org/10.1109/JPHOTOV.2023.3299752
,2023, 'Silicon solar cells step up', Nature Energy, 8, pp. 783 - 784, http://dx.doi.org/10.1038/s41560-023-01296-7
,2023, 'Charge carrier transport properties of twin domains in halide perovskites', Journal of Materials Chemistry A, 11, pp. 16743 - 16754, http://dx.doi.org/10.1039/d3ta02565a
,2023, 'Solar cell efficiency tables (version 62)', Progress in Photovoltaics: Research and Applications, 31, pp. 651 - 663, http://dx.doi.org/10.1002/pip.3726
,2023, 'Low-Temperature Plasma-Enhanced Atomic Layer Deposition of ZnMgO for Efficient CZTS Solar Cells', ACS Materials Letters, 5, pp. 1456 - 1465, http://dx.doi.org/10.1021/acsmaterialslett.2c01203
,2023, 'Comparative durability study of commercial inner-pore antireflection coatings and alternative dense coatings', Solar Energy Materials and Solar Cells, 251, http://dx.doi.org/10.1016/j.solmat.2022.112122
,2023, 'A Critical Review on the Progress of Kesterite Solar Cells: Current Strategies and Insights', Advanced Energy Materials, 13, http://dx.doi.org/10.1002/aenm.202203046
,2023, 'Emerging Chalcohalide Materials for Energy Applications', Chemical Reviews, 123, pp. 327 - 378, http://dx.doi.org/10.1021/acs.chemrev.2c00422
,2023, 'Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive', Nature Photonics, 17, pp. 96 - 105, http://dx.doi.org/10.1038/s41566-022-01111-x
,2022, '10.3% Efficient Green Cd-Free Cu
2022, 'Manipulating the Distributions of Na and Cd by Moisture-Assisted Postdeposition Annealing for Efficient Kesterite Cu
2022, 'Corrigendum to “Improved Silicon Optical Parameters at 25°C, 295K and 300K including Temperature Coefficients” [Prog. Photovolt: Res. Appl. 2022; 30: 164–179]', Progress in Photovoltaics: Research and Applications, 30, pp. 1144 - 1145, http://dx.doi.org/10.1002/pip.3560
,2022, 'Defect Engineering for Efficient Cu
2022, 'Luminescence imaging of solar modules in full sunlight using ultranarrow bandpass filters', Progress in Photovoltaics: Research and Applications, 30, pp. 1115 - 1121, http://dx.doi.org/10.1002/pip.3563
,2022, 'Combatting temperature and reverse-bias challenges facing perovskite solar cells', Joule, 6, pp. 1782 - 1797, http://dx.doi.org/10.1016/j.joule.2022.06.014
,2022, 'Solar cell efficiency tables (Version 60)', Progress in Photovoltaics: Research and Applications, 30, pp. 687 - 701, http://dx.doi.org/10.1002/pip.3595
,2022, 'Passive PV module cooling under free convection through vortex generators', Renewable Energy, 190, pp. 319 - 329, http://dx.doi.org/10.1016/j.renene.2022.03.133
,2022, 'Low-Cost Fabrication of Sb
2022, 'Large-Grain Spanning Monolayer Cu
2022, '9.6%-Efficient all-inorganic Sb
2022, 'Improved silicon optical parameters at 25°C, 295 K and 300 K including temperature coefficients', Progress in Photovoltaics: Research and Applications, 30, pp. 164 - 179, http://dx.doi.org/10.1002/pip.3474
,2022, 'Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells', Journal of Materials Chemistry A, 10, pp. 2105 - 2112, http://dx.doi.org/10.1039/d1ta08402j
,2022, 'Revealing the Dynamics of the Thermal Reaction between Copper and Mixed Halide Perovskite Solar Cells', ACS Applied Materials and Interfaces, http://dx.doi.org/10.1021/acsami.2c01061
,2022, 'Solar cell efficiency tables (version 59)', Progress in Photovoltaics: Research and Applications, 30, pp. 3 - 12, http://dx.doi.org/10.1002/pip.3506
,2022, 'Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells', Nature Energy, http://dx.doi.org/10.1038/s41560-022-01078-7
,2021, 'Recent progress and future prospects of perovskite tandem solar cells', Applied Physics Reviews, 8, http://dx.doi.org/10.1063/5.0061483
,2021, 'Editorial for Stuart Wenham Special Issue', Progress in Photovoltaics: Research and Applications, 29, pp. 1147 - 1148, http://dx.doi.org/10.1002/pip.3471
,2021, 'Systematic Efficiency Improvement for Cu
2021, 'Peer behaviour boosts recycling', Nature Energy, 6, pp. 862 - 863, http://dx.doi.org/10.1038/s41560-021-00905-7
,2021, 'Immediate and Temporal Enhancement of Power Conversion Efficiency in Surface-Passivated Perovskite Solar Cells', ACS Applied Materials and Interfaces, 13, pp. 39178 - 39185, http://dx.doi.org/10.1021/acsami.1c06878
,2021, 'Singlet fission and tandem solar cells reduce thermal degradation and enhance lifespan', Progress in Photovoltaics: Research and Applications, 29, pp. 899 - 906, http://dx.doi.org/10.1002/pip.3405
,2021, 'Solar cell efficiency tables (Version 58)', Progress in Photovoltaics: Research and Applications, 29, pp. 657 - 667, http://dx.doi.org/10.1002/pip.3444
,2021, 'Kesterite Solar Cells: Insights into Current Strategies and Challenges', Advanced Science, 8, http://dx.doi.org/10.1002/advs.202004313
,2021, 'High Efficiency Cu
2021, 'Elucidating Mechanisms behind Ambient Storage-Induced Efficiency Improvements in Perovskite Solar Cells', ACS Energy Letters, 6, pp. 925 - 933, http://dx.doi.org/10.1021/acsenergylett.0c02406
,2021, 'Defect-Resolved Effective Majority Carrier Mobility in Highly Anisotropic Antimony Chalcogenide Thin-Film Solar Cells', Solar RRL, 5, http://dx.doi.org/10.1002/solr.202000693
,2021, 'Enhanced hole-carrier selectivity in wide bandgap halide perovskite PV devices for indoor IoT applications', Advanced Functional Materials, pp. 2008908 - 2008908, http://dx.doi.org/10.1002/adfm.202008908
,2021, 'Kinetics of light-induced degradation in semi-transparent perovskite solar cells', Solar Energy Materials and Solar Cells, 219, http://dx.doi.org/10.1016/j.solmat.2020.110776
,2021, 'Optical and Thermal Emission Benefits of Differently Textured Glass for Photovoltaic Modules', IEEE Journal of Photovoltaics, 11, pp. 131 - 137, http://dx.doi.org/10.1109/JPHOTOV.2020.3033390
,2021, 'Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time-Resolved Microspectroscopy', Small Methods, 5, http://dx.doi.org/10.1002/smtd.202000731
,2021, 'Solar cell efficiency tables (version 57)', Progress in Photovoltaics: Research and Applications, 29, pp. 3 - 15, http://dx.doi.org/10.1002/pip.3371
,2021, 'Front Cover: Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time‐Resolved Microspectroscopy (Small Methods 1/2021)', Small Methods, 5, http://dx.doi.org/10.1002/smtd.202170001
,2020, '11.6% Efficient Pure Sulfide Cu(In,Ga)S
2020, 'Defect Control for 12.5% Efficiency Cu
2020, 'Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies', Materials Today, 41, pp. 120 - 142, http://dx.doi.org/10.1016/j.mattod.2020.09.002
,2020, 'Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency', Nature Energy, 5, pp. 587 - 595, http://dx.doi.org/10.1038/s41560-020-0652-3
,