Select Publications
Preprints
2020, Spin thermometry and spin relaxation of optically detected Cr3+ ions in ruby Al2O3, http://dx.doi.org/10.48550/arxiv.2007.07493
,2020, Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device, http://dx.doi.org/10.48550/arxiv.2006.04483
,2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.48550/arxiv.2004.07666
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.48550/arxiv.2004.07078
,2020, Coherent control of NV- centers in diamond in a quantum teaching lab, http://dx.doi.org/10.48550/arxiv.2004.02643
,2019, Controllable freezing of the nuclear spin bath in a single-atom spin qubit, http://dx.doi.org/10.48550/arxiv.1907.11032
,2019, Coherent electrical control of a single high-spin nucleus in silicon, http://dx.doi.org/10.48550/arxiv.1906.01086
,2019, A silicon quantum-dot-coupled nuclear spin qubit, http://dx.doi.org/10.48550/arxiv.1904.08260
,2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.48550/arxiv.1902.09126
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.48550/arxiv.1902.01550
,2018, Single-spin qubits in isotopically enriched silicon at low magnetic field, http://dx.doi.org/10.48550/arxiv.1812.08347
,2018, Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices, http://dx.doi.org/10.48550/arxiv.1812.06644
,2018, Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction, http://dx.doi.org/10.48550/arxiv.1807.10415
,2018, Silicon qubit fidelities approaching incoherent noise limits via pulse engineering, http://dx.doi.org/10.48550/arxiv.1807.09500
,2018, Fidelity benchmarks for two-qubit gates in silicon, http://dx.doi.org/10.48550/arxiv.1805.05027
,2018, Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy, http://dx.doi.org/10.48550/arxiv.1803.01609
,2017, Integrated silicon qubit platform with single-spin addressability, exchange control and robust single-shot singlet-triplet readout, http://dx.doi.org/10.48550/arxiv.1708.03445
,2017, Robust electric dipole transition at microwave frequencies for nuclear spin qubits in silicon, http://dx.doi.org/10.48550/arxiv.1706.08095
,2017, Coherent control via weak measurements in $^{31}$P single-atom electron and nuclear spin qubits, http://dx.doi.org/10.48550/arxiv.1702.07991
,2016, A single-atom quantum memory in silicon, http://dx.doi.org/10.48550/arxiv.1608.07109
,2016, Optimization of a solid-state electron spin qubit using Gate Set Tomography, http://dx.doi.org/10.48550/arxiv.1606.02856
,2016, Breaking the rotating wave approximation for a strongly-driven, dressed, single electron spin, http://dx.doi.org/10.48550/arxiv.1606.02380
,2016, A Dressed Spin Qubit in Silicon, http://dx.doi.org/10.48550/arxiv.1603.04800
,2016, Vibration-induced electrical noise in a cryogen-free dilution refrigerator: characterization, mitigation, and impact on qubit coherence, http://dx.doi.org/10.48550/arxiv.1603.03146
,2016, Transport of Spin Qubits with Donor Chains under Realistic Experimental Conditions, http://dx.doi.org/10.48550/arxiv.1602.07058
,2015, Bell's inequality violation with spins in silicon, http://dx.doi.org/10.48550/arxiv.1504.03112
,2015, Electrically controlling single spin qubits in a continuous microwave field, http://dx.doi.org/10.48550/arxiv.1503.05985
,2014, A Two Qubit Logic Gate in Silicon, http://dx.doi.org/10.48550/arxiv.1411.5760
,2014, Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking, http://dx.doi.org/10.48550/arxiv.1410.2338
,2014, Storing quantum information for 30 seconds in a nanoelectronic device, http://dx.doi.org/10.48550/arxiv.1402.7140
,2013, High-fidelity adiabatic inversion of a $^{31}\mathrm{P}$ electron spin qubit in natural silicon, http://dx.doi.org/10.48550/arxiv.1312.4647
,2013, Robust two-qubit gates for donors in silicon controlled by hyperfine interactions, http://dx.doi.org/10.48550/arxiv.1312.2197
,2012, Fluctuation induced luminescence sidebands in the emission spectra of resonantly driven quantum dots, http://dx.doi.org/10.48550/arxiv.1207.6952
,2012, Broadband Purcell enhanced emission dynamics of quantum dots in linear photonic crystal waveguides, http://dx.doi.org/10.48550/arxiv.1205.1286
,2012, A Waveguide-Coupled On-Chip Single Photon Source, http://dx.doi.org/10.48550/arxiv.1201.5153
,2011, Climbing the Jaynes-Cummings ladder by photon counting, http://dx.doi.org/10.48550/arxiv.1104.3564
,2011, A Correlation between the Emission Intensity of Self-Assembled Germanium Islands and the Quality Factor of Silicon Photonic Crystal Nanocavities, http://dx.doi.org/10.48550/arxiv.1103.3748
,2011, Cavity versus dot emission in strongly coupled quantum dots-cavity systems, http://dx.doi.org/10.48550/arxiv.1102.3874
,2010, Recent progress towards acoustically mediated carrier injection into individual nanostructures for single photon generation, http://dx.doi.org/10.48550/arxiv.1011.5048
,2010, Non-resonant feeding of photonic crystal nanocavity modes by quantum dots, http://dx.doi.org/10.48550/arxiv.1007.3032
,2010, Temporal Monitoring of Non-resonant Feeding of Semiconductor Nanocavity Modes by Quantum Dot Multiexciton Transitions, http://dx.doi.org/10.48550/arxiv.1003.2946
,2009, Mutual Coupling of two Semiconductor Quantum Dots via an Optical Nanocavity Mode, http://dx.doi.org/10.48550/arxiv.0912.3685
,2009, Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities, http://dx.doi.org/10.48550/arxiv.0912.0774
,2009, Phonon-assisted transitions from quantum dot excitons to cavity photons, http://dx.doi.org/10.48550/arxiv.0910.3749
,2009, Cascaded exciton emission of an individual strain-induced quantum dot, http://dx.doi.org/10.48550/arxiv.0908.1665
,2009, Dephasing of quantum dot exciton polaritons in electrically tunable nanocavities, http://dx.doi.org/10.48550/arxiv.0904.4759
,2008, Electrical control of spontaneous emission and strong coupling for a single quantum dot, http://dx.doi.org/10.48550/arxiv.0810.3010
,2008, Cavity-resonant excitation for efficient single photon generation, http://dx.doi.org/10.48550/arxiv.0803.2403
,2008, Investigation of Non Resonant Dot - Cavity Coupling in Two Dimensional Photonic Crystal Nanocavities, http://dx.doi.org/10.48550/arxiv.0802.2008
,