Select Publications
Conference Papers
2023, 'Hyperfine spectroscopy and fast all-optical arbitrary nuclear state preparation of a single 73Ge vacancy in diamond', in Figer DF; Reimer M (ed.), Photonics for Quantum 2023, SPIE, pp. 25 - 25, presented at Photonics for Quantum 2023, 05 June 2023 - 09 June 2023, http://dx.doi.org/10.1117/12.2675865
,2018, 'Controlling spin-orbit interaction in scalable silicon-MOS quantum dot architectures', in Extended Abstracts of the 2018 International Conference on Solid State Devices and Materials, The Japan Society of Applied Physics, presented at 2018 International Conference on Solid State Devices and Materials, 09 September 2018 - 13 September 2018, http://dx.doi.org/10.7567/ssdm.2018.a-7-01
,2018, 'Scalable quantum computing with ion-implanted dopant atoms in Silicon', in Technical Digest - International Electron Devices Meeting, IEDM, pp. 6.2.1 - 6.2.4, http://dx.doi.org/10.1109/IEDM.2018.8614498
,2017, 'Spin Qubits in Silicon – Advantages of Dressed States', in Brazilian Workshop on Semiconductor Physics, Galoa, presented at Brazilian Workshop on Semiconductor Physics, 14 August 2017 - 18 August 2017, http://dx.doi.org/10.17648/bwsp-2017-69955
,2014, 'Single-atom spin qubits in silicon', in 2014 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2014, pp. 198 - 199, http://dx.doi.org/10.1109/COMMAD.2014.7038688
,2014, 'Single-atom spin qubits in silicon', in 2014 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2014, pp. 198 - 199, http://dx.doi.org/10.1109/COMMAD.2014.7038688
,2009, 'ELECTRICALLY TUNABLE SINGLE DOT NANOCAVITIES', in Vina L; Tejedor C; Calleja JM (eds.), 11TH INTERNATIONAL CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS11), IOP PUBLISHING LTD, SPAIN, Univ Autonoma Madrid, Cantoblanco, presented at 11th International Conference on Optics of Excitons in Confined Systems, SPAIN, Univ Autonoma Madrid, Cantoblanco, 07 September 2009 - 11 September 2009, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000289715800073&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,Patents
2018, Quantum logic, Patent No. Australian patent no. 2013302299; United States patent no.10878331; Switzerland patent no. 2883194; Germany patent no. 602013071401; France patent no. 2883194; United Kingdom patent no. 2883194; Ireland patent no. 2883194; Netherlands patent no. 2883194, https://worldwide.espacenet.com/publicationDetails/biblio?CC=AU&NR=2013302299B2&KC=B2&FT=D
,Working Papers
2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org10.21203/rs.3.rs-3057916/v1, http://dx.doi.org/10.21203/rs.3.rs-3057916/v1
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org, http://dx.doi.org/10.1038/s41534-022-00645-w
,Creative Works (non-textual)
2023, Jellybean Quantum Dots in Silicon for Qubit Coupling and On‐Chip Quantum Chemistry (Adv. Mater. 19/2023), at: http://dx.doi.org/10.1002/adma.202370133
,Preprints
2024, A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations, http://arxiv.org/abs/2410.15590v2
,2024, Violating Bell's inequality in gate-defined quantum dots, http://arxiv.org/abs/2407.15778v2
,2024, Spin Qubits with Scalable milli-kelvin CMOS Control, http://dx.doi.org/10.48550/arxiv.2407.15151
,2024, A Room-Temperature Solid-State Maser Amplifier, http://arxiv.org/abs/2405.07486v2
,2024, Coherent all-optical control of a solid-state spin via a double $\Lambda$-system, http://dx.doi.org/10.48550/arxiv.2402.00244
,2023, Entangling gates on degenerate spin qubits dressed by a global field, http://dx.doi.org/10.1038/s41467-024-52010-4
,2023, Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits, http://dx.doi.org/10.48550/arxiv.2309.15463
,2023, All-electron $\mathrm{\textit{ab-initio}}$ hyperfine coupling of Si-, Ge- and Sn-vacancy defects in diamond, http://dx.doi.org/10.48550/arxiv.2309.13913
,2023, Real-time feedback protocols for optimizing fault-tolerant two-qubit gate fidelities in a silicon spin system, http://dx.doi.org/10.1063/5.0179958
,2023, Spatio-temporal correlations of noise in MOS spin qubits, http://arxiv.org/abs/2309.12542v2
,2023, Hyperfine spectroscopy and fast, all-optical arbitrary state initialization and readout of a single, ten-level ${}^{73}$Ge vacancy nuclear spin qudit in diamond, http://dx.doi.org/10.1103/PhysRevLett.132.060603
,2023, Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2023, High-fidelity operation and algorithmic initialisation of spin qubits above one kelvin, http://dx.doi.org/10.1038/s41586-024-07160-2
,2023, Characterizing non-Markovian Quantum Process by Fast Bayesian Tomography, http://arxiv.org/abs/2307.12452v2
,2023, Improved Single-Shot Qubit Readout Using Twin RF-SET Charge Correlations, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org/10.1038/s41467-024-48557-x
,2023, Assessment of error variation in high-fidelity two-qubit gates in silicon, http://dx.doi.org/10.1038/s41567-024-02614-w
,2023, Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron Nitride, http://arxiv.org/abs/2302.06212v2
,2022, Coherent spin dynamics of hyperfine-coupled vanadium impurities in silicon carbide, http://dx.doi.org/10.48550/arxiv.2210.09942
,2022, High Fidelity Control of a Nitrogen-Vacancy Spin Qubit at Room Temperature using the SMART Protocol, http://dx.doi.org/10.1103/PhysRevA.108.022606
,2022, Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry, http://dx.doi.org/10.1002/adma.202208557
,2022, Control of dephasing in spin qubits during coherent transport in silicon, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2022, Indirect control of the 29SiV- nuclear spin in diamond, http://dx.doi.org/10.48550/arxiv.2203.10283
,2022, Quantum-Coherent Nanoscience, http://dx.doi.org/10.1038/s41565-021-00994-1
,2022, Integrated Room Temperature Single Photon Source for Quantum Key Distribution, http://dx.doi.org/10.48550/arxiv.2201.11882
,2022, On-demand electrical control of spin qubits, http://dx.doi.org/10.1038/s41565-022-01280-4
,2021, Development of an Undergraduate Quantum Engineering Degree, http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Observing hyperfine interactions of NV centers in diamond in an advanced quantum teaching lab, http://dx.doi.org/10.1119/5.0075519
,2021, Implementation of the SMART protocol for global qubit control in silicon, http://dx.doi.org/10.48550/arxiv.2108.00836
,2021, Quantum Computation Protocol for Dressed Spins in a Global Field, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, The SMART protocol -- Pulse engineering of a global field for robust and universal quantum computation, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org/10.48550/arxiv.2107.14622
,2021, Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits, http://arxiv.org/abs/2107.13664v2
,2021, A high-sensitivity charge sensor for silicon qubits above one kelvin, http://dx.doi.org/10.48550/arxiv.2103.06433
,2021, Roadmap on quantum nanotechnologies, http://dx.doi.org/10.48550/arxiv.2101.07882
,2020, Single-electron spin resonance in a nanoelectronic device using a global field, http://dx.doi.org/10.48550/arxiv.2012.10225
,2020, An ultra-stable 1.5 tesla permanent magnet assembly for qubit experiments at cryogenic temperatures, http://dx.doi.org/10.48550/arxiv.2010.02455
,2020, Bell-state tomography in a silicon many-electron artificial molecule, http://dx.doi.org/10.48550/arxiv.2008.03968
,2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.48550/arxiv.2008.04020
,