Select Publications
Preprints
2024, A Room-Temperature Solid-State Maser Amplifier, http://arxiv.org/abs/2405.07486v2
,2023, Selective Single and Double-Mode Quantum Limited Amplifier, http://dx.doi.org/10.48550/arxiv.2311.11496
,2023, Strong Microwave Squeezing Above 1 Tesla and 1 Kelvin, http://dx.doi.org/10.48550/arxiv.2311.07968
,2023, Latched Detection of Zeptojoule Spin Echoes with a Kinetic Inductance Parametric Oscillator, http://dx.doi.org/10.48550/arxiv.2311.03702
,2022, In-situ amplification of spin echoes within a kinetic inductance parametric amplifier, http://dx.doi.org/10.48550/arxiv.2211.11333
,2022, An electrically-driven single-atom `flip-flop' qubit, http://arxiv.org/abs/2202.04438v3
,2021, Development of an Undergraduate Quantum Engineering Degree, http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Observing hyperfine interactions of NV centers in diamond in an advanced quantum teaching lab, http://dx.doi.org/10.1119/5.0075519
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org/10.48550/arxiv.2107.14622
,2021, Roadmap on quantum nanotechnologies, http://dx.doi.org/10.48550/arxiv.2101.07882
,2021, Spatially-resolved decoherence of donor spins in silicon strained by a metallic electrode, http://dx.doi.org/10.48550/arxiv.2101.04391
,2020, Single-electron spin resonance in a nanoelectronic device using a global field, http://dx.doi.org/10.48550/arxiv.2012.10225
,2020, Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory, http://dx.doi.org/10.48550/arxiv.2012.06293
,2020, Donor spins in silicon for quantum technologies, http://dx.doi.org/10.48550/arxiv.2009.04081
,2020, Coherent control of NV- centers in diamond in a quantum teaching lab, http://dx.doi.org/10.48550/arxiv.2004.02643
,2019, Coherent electrical control of a single high-spin nucleus in silicon, http://dx.doi.org/10.48550/arxiv.1906.01086
,2017, Linear hyperfine tuning of donor spins in silicon using hydrostatic strain, http://dx.doi.org/10.48550/arxiv.1710.00723
,2017, Inductive-detection electron-spin resonance spectroscopy with $\mathbf{65}\,$spins$/\sqrt{\text{Hz}}$ sensitivity, http://dx.doi.org/10.48550/arxiv.1708.09287
,2017, Exploring quantum chaos with a single nuclear spin, http://dx.doi.org/10.48550/arxiv.1703.04852
,2016, Magnetic resonance with squeezed microwaves, http://dx.doi.org/10.48550/arxiv.1610.03329
,2016, Strain-induced spin resonance shifts in silicon devices, http://dx.doi.org/10.48550/arxiv.1608.07346
,2015, Controlling spin relaxation with a cavity, http://dx.doi.org/10.48550/arxiv.1508.06148
,2015, Reaching the quantum limit of sensitivity in electron spin resonance, http://dx.doi.org/10.48550/arxiv.1507.06831
,2014, Coherent Control of a Single Silicon-29 Nuclear Spin Qubit, http://dx.doi.org/10.48550/arxiv.1408.1347
,2013, A single-atom electron spin qubit in silicon, http://dx.doi.org/10.48550/arxiv.1305.4481
,2013, High-fidelity readout and control of a nuclear spin qubit in silicon, http://dx.doi.org/10.48550/arxiv.1302.0047
,2012, Nanoscale broadband transmission lines for spin qubit control, http://dx.doi.org/10.48550/arxiv.1208.2421
,2010, Single-shot readout of an electron spin in silicon, http://dx.doi.org/10.48550/arxiv.1003.2679
,