Select Publications
Journal articles
2020, 'Visible light mediated PVA-tyramine hydrogels for covalent incorporation and tailorable release of functional growth factors', Biomaterials Science, 8, pp. 5005 - 5019, http://dx.doi.org/10.1039/d0bm00603c
,2020, 'A Biomimetic Approach toward Enhancing Angiogenesis: Recombinantly Expressed Domain V of Human Perlecan Is a Bioactive Molecule That Promotes Angiogenesis and Vascularization of Implanted Biomaterials', Adv. Sci., 7, pp. 2000900, http://dx.doi.org/10.1002/advs.202000900
,2020, 'Microchannels are an architectural cue that promotes integration and vascularization of silk biomaterials in vivo', ACS Biomaterials Science and Engineering, 6, pp. 1476 - 1486, http://dx.doi.org/10.1021/acsbiomaterials.9b01624
,2020, 'Rapid Photocrosslinking of Silk Hydrogels with High Cell Density and Enhanced Shape Fidelity', Advanced Healthcare Materials, 9, pp. e1901667, http://dx.doi.org/10.1002/adhm.201901667
,2020, '3D Bioprinting of Cardiovascular Tissues for In Vivo and In Vitro Applications Using Hybrid Hydrogels Containing Silk Fibroin: State of the Art and Challenges', Current Tissue Microenvironment Reports, 1, pp. 261 - 276, http://dx.doi.org/10.1007/s43152-020-00026-5
,2019, 'Altered processing enhances the efficacy of small-diameter silk fibroin vascular grafts', Scientific Reports, 9, http://dx.doi.org/10.1038/s41598-019-53972-y
,2019, 'Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds', Advanced Healthcare Materials, 8, http://dx.doi.org/10.1002/adhm.201901106
,2019, 'Microchannels in Development, Survival, and Vascularisation of Tissue Analogues for Regenerative Medicine', Trends in Biotechnology, 37, pp. 1189 - 1201, http://dx.doi.org/10.1016/j.tibtech.2019.04.004
,2019, 'The Biomedical Use of Silk: Past, Present, Future', Advanced Healthcare Materials, 8, pp. e1800465, http://dx.doi.org/10.1002/adhm.201800465
,2018, 'The multifaceted roles of perlecan in fibrosis', Matrix Biology, 68-69, pp. 150 - 166, http://dx.doi.org/10.1016/j.matbio.2018.02.013
,2018, 'Plasma Ion Implantation of Silk Biomaterials Enabling Direct Covalent Immobilization of Bioactive Agents for Enhanced Cellular Responses', ACS Applied Materials and Interfaces, 10, pp. 17605 - 17616, http://dx.doi.org/10.1021/acsami.8b03182
,2018, 'Glycosaminoglycan and Proteoglycan-Based Biomaterials: Current Trends and Future Perspectives', Advanced Healthcare Materials, 7, pp. 1701042 - 1701042, http://dx.doi.org/10.1002/adhm.201701042
,2018, 'Integration of induced pluripotent stem cell-derived endothelial cells with polycaprolactone/gelatin-based electrospun scaffolds for enhanced therapeutic angiogenesis', Stem Cell Research and Therapy, 9, http://dx.doi.org/10.1186/s13287-018-0824-2
,2018, 'Rapid Endothelialization of Off-the-Shelf Small Diameter Silk Vascular Grafts', JACC: Basic to Translational Science, 3, pp. 38 - 53, http://dx.doi.org/10.1016/j.jacbts.2017.12.003
,2017, 'Recombinant Domain V of Human Perlecan Is a Bioactive Vascular Proteoglycan', Biotechnology Journal, 12, http://dx.doi.org/10.1002/biot.201700196
,2016, 'Silk biomaterials functionalized with recombinant domain V of human perlecan modulate endothelial cell and platelet interactions for vascular applications', Colloids and Surfaces B: Biointerfaces, 148, pp. 130 - 138, http://dx.doi.org/10.1016/j.colsurfb.2016.08.039
,2016, 'Bioengineered human heparin with anticoagulant activity', Metabolic Engineering, 38, pp. 105 - 114, http://dx.doi.org/10.1016/j.ymben.2016.07.006
,2016, 'In situ formation of poly(vinyl alcohol)–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor', Journal of Tissue Engineering, 7, http://dx.doi.org/10.1177/2041731416677132
,2016, 'Degradation of silk films in multipocket corneal stromal rabbit models', Journal of Applied Biomaterials and Functional Materials, 14, pp. e266 - e276, http://dx.doi.org/10.5301/jabfm.5000274
,2016, 'Bioengineering Proteoglycan‐based Matrices For Blood Contacting Applications', The FASEB Journal, 30, http://dx.doi.org/10.1096/fasebj.30.1_supplement.622.2
,2016, 'Bioengineering Synthetic Silk Conduits for Arterial Revascularisation', Heart, Lung and Circulation, 25, pp. S32 - S32, http://dx.doi.org/10.1016/j.hlc.2016.06.072
,2015, 'Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering', ACS Biomaterials Science and Engineering, 1, pp. 260 - 270, http://dx.doi.org/10.1021/ab500149p
,2015, 'Robust bioengineered 3D functional human intestinal epithelium', Scientific Reports, 5, http://dx.doi.org/10.1038/srep13708
,2015, 'Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration', Biomaterials, 56, pp. 68 - 77, http://dx.doi.org/10.1016/j.biomaterials.2015.03.053
,2015, 'Corneal Tissue Engineering: Recent Advances and Future Perspectives', Tissue Engineering - Part B: Reviews, 21, pp. 278 - 287, http://dx.doi.org/10.1089/ten.teb.2014.0397
,2015, 'The effect of sterilization on silk fibroin biomaterial properties', Macromolecular Bioscience, 15, pp. 861 - 874, http://dx.doi.org/10.1002/mabi.201500013
,2015, 'Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix', Expert Review of Molecular Diagnostics, 15, pp. 77 - 95, http://dx.doi.org/10.1586/14737159.2015.979158
,2014, 'Highly tunable elastomeric silk biomaterials', Advanced Functional Materials, 24, pp. 4615 - 4624, http://dx.doi.org/10.1002/adfm.201400526
,2014, 'Arrayed hollow channels in silk-based scaffolds provide functional outcomes for engineering critically sized tissue constructs', Advanced Functional Materials, 24, pp. 2188 - 2196, http://dx.doi.org/10.1002/adfm.201302901
,2014, 'Corneal stromal bioequivalents secreted on patterned silk substrates', Biomaterials, 35, pp. 3744 - 3755, http://dx.doi.org/10.1016/j.biomaterials.2013.12.078
,2014, 'Biocompatibility of silk-tropoelastin protein polymers', Biomaterials, 35, pp. 5138 - 5147, http://dx.doi.org/10.1016/j.biomaterials.2014.03.024
,2014, 'Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds', Biomaterials, 35, pp. 6941 - 6953, http://dx.doi.org/10.1016/j.biomaterials.2014.05.013
,2014, 'Tropoelastin: A versatile, bioactive assembly module', Acta Biomaterialia, 10, pp. 1532 - 1541, http://dx.doi.org/10.1016/j.actbio.2013.08.003
,2014, 'Biocompatibility of silk-tropoelastin protein polymers', Biomaterials, http://dx.doi.org/10.1016/j.biomaterials.2014.03.024
,2014, 'Corneal stromal bioequivalents secreted on patterned silk substrates', Biomaterials, http://dx.doi.org/10.1016/j.biomaterials.2013.12.078
,2014, 'Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds', Biomaterials, http://dx.doi.org/10.1016/j.biomaterials.2014.05.013
,2013, 'Multifunctional silk-tropoelastin biomaterial systems', Israel Journal of Chemistry, 53, pp. 777 - 786, http://dx.doi.org/10.1002/ijch.201300082
,2013, 'Tropoelastin modulates TGF-β1-induced expression of VEGF and CTGF in airway smooth muscle cells', Matrix Biology, 32, pp. 407 - 413, http://dx.doi.org/10.1016/j.matbio.2013.04.003
,2013, 'Accelerated In Vitro Degradation of Optically Clear Low beta-Sheet Silk Films by Enzyme-Mediated Pretreatment', TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2, http://dx.doi.org/10.1167/tvst.2.3.2
,2013, 'pH-Dependent Anticancer Drug Release from Silk Nanoparticles', Advanced Healthcare Materials, 2, pp. 1606 - 1611, http://dx.doi.org/10.1002/adhm.201300034
,2012, 'A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs', Biomaterials, 33, pp. 9214 - 9224, http://dx.doi.org/10.1016/j.biomaterials.2012.09.017
,2012, 'Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering', ACTA Biomaterialia, 8, pp. 3714 - 3722, http://dx.doi.org/10.1016/j.actbio.2012.06.032
,2011, 'Elastin-based dermal substitutes', 24th European Conference on Biomaterials - Annual Conference of the European Society for Biomaterials
,2011, 'Increasing the pore size of electrospun scaffolds', Tissue Engineering - Part B: Reviews, 17, pp. 365 - 372, http://dx.doi.org/10.1089/ten.teb.2011.0235
,2011, 'Severe burn injuries and the role of Elastin in the design of dermal substitutes', Tissue Engineering - Part B: Reviews, 17, pp. 81 - 91, http://dx.doi.org/10.1089/ten.teb.2010.0452
,2011, 'Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering', Biomaterials, 32, pp. 6729 - 6736, http://dx.doi.org/10.1016/j.biomaterials.2011.05.065
,2010, 'ChemInform Abstract: Elastin‐Based Materials', ChemInform, 41, http://dx.doi.org/10.1002/chin.201051252
,2010, 'Biomaterials derived from silk-tropoelastin protein systems', Biomaterials, 31, pp. 8121 - 8131, http://dx.doi.org/10.1016/j.biomaterials.2010.07.044
,2010, 'Elastin-based materials', Chemical Society Reviews, 39, pp. 3371 - 3379, http://dx.doi.org/10.1039/b919452p
,2010, 'Synthetic human elastin microfibers: Stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications', Acta Biomaterialia, 6, pp. 354 - 359, http://dx.doi.org/10.1016/j.actbio.2009.08.011
,