Select Publications
Book Chapters
2019, 'Mechanosensitivity of Ion Channels', in Encyclopedia of Biophysics, Springer Berlin Heidelberg, pp. 1 - 11, http://dx.doi.org/10.1007/978-3-642-35943-9_376-2
,2018, 'Mechanosensitivity of Ion Channels', in Encyclopedia of Biophysics, Springer Berlin Heidelberg, pp. 1 - 11, http://dx.doi.org/10.1007/978-3-642-35943-9_376-1
,2017, 'Nanotechnology: Building and Observing at the Nanometer Scale', in Pharmacognosy: Fundamentals, Applications and Strategy, pp. 633 - 643, http://dx.doi.org/10.1016/B978-0-12-802104-0.00032-9
,2016, 'How biophysics may help us understand the flagellar motor of bacteria which cause infections', in Biophysics of Infection, pp. 231 - 243, http://dx.doi.org/10.1007/978-3-319-32189-9_14
,Journal articles
2024, 'The parasitic lifestyle of an archaeal symbiont', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-49962-y
,2024, 'Hybrid Exb/Mot stators require substitutions distant from the chimeric pore to power flagellar rotation', Journal of Bacteriology, 206, http://dx.doi.org/10.1128/jb.00140-24
,2024, 'Meet the IUPAB Councillor: A/Prof Matthew AB Baker (UNSW Sydney, Australia)', Biophysical Reviews, 16, pp. 511 - 512, http://dx.doi.org/10.1007/s12551-024-01240-3
,2024, 'Structure, function, and biophysics of bacterial motility and the flagellar motor—IUPAB2024 session commentary', Biophysical Reviews, 16, pp. 537 - 538, http://dx.doi.org/10.1007/s12551-024-01243-0
,2024, 'Light Control in Microbial Systems', International Journal of Molecular Sciences, 25, http://dx.doi.org/10.3390/ijms25074001
,2024, 'DIB-BOT: An Open-Source Hardware Approach for Plate-Integrated Droplet Interface Bilayer Deposition', Advanced Materials Interfaces, http://dx.doi.org/10.1002/admi.202400413
,2023, 'Tuning the stator subunit of the flagellar motor with coiled-coil engineering', Protein Science, 32, http://dx.doi.org/10.1002/pro.4811
,2023, 'Ion-Powered Rotary Motors: Where Did They Come from and Where They Are Going?', International Journal of Molecular Sciences, 24, http://dx.doi.org/10.3390/ijms241310601
,2023, 'Computer-Aided Diagnosis of Melanoma Subtypes Using Reflectance Confocal Images', Cancers, 15, http://dx.doi.org/10.3390/cancers15051428
,2023, 'Microbial stir bars: Light-activated rotation of tethered bacterial cells to enhance mixing in stagnant fluids', Biomicrofluidics, 17, http://dx.doi.org/10.1063/5.0144934
,2023, 'Ancestral reconstruction of the MotA stator subunit reveals that conserved residues far from the pore are required to drive flagellar motility', MicroLife, 4, http://dx.doi.org/10.1093/femsml/uqad011
,2022, 'Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation', Nature Communications, 13, http://dx.doi.org/10.1038/s41467-022-31898-w
,2022, 'The rapid evolution of flagellar ion selectivity in experimental populations of E. coli', Science Advances, 8, http://dx.doi.org/10.1126/sciadv.abq2492
,2022, 'Editorial: Flagellar Motors and Force Sensing in Bacteria', Frontiers in Microbiology, 13, http://dx.doi.org/10.3389/fmicb.2022.833011
,2021, 'Erratum: Binding of DNA origami to lipids: Maximizing yield and switching via strand displacement (Nucleic Acids Res (2021) 49:9 (10835-10850) DOI: 10.1093/nar/gkab888)', Nucleic Acids Research, 49, pp. 12600, http://dx.doi.org/10.1093/nar/gkab1163
,2021, 'Minimizing cholesterol-induced aggregation of membrane-interacting dna origami nanostructures', Membranes, 11, http://dx.doi.org/10.3390/membranes11120950
,2021, 'Binding of DNA origami to lipids: Maximizing yield and switching via strand displacement', Nucleic Acids Research, 49, pp. 10835 - 10850, http://dx.doi.org/10.1093/nar/gkab888
,2021, 'Fluorescence approaches for characterizing ion channels in synthetic bilayers', Membranes, 11, http://dx.doi.org/10.3390/membranes11110857
,2021, 'Novel amiloride derivatives that inhibit bacterial motility across multiple strains and stator types', Journal of Bacteriology, 203, http://dx.doi.org/10.1128/JB.00367-21
,2021, 'Flagellar export apparatus and ATP synthetase: Homology evidenced by synteny predating the Last Universal Common Ancestor', BioEssays, 43, http://dx.doi.org/10.1002/bies.202100004
,2021, 'Separation and enrichment of sodium-motile bacteria using cost-effective microfluidics', Biomicrofluidics, 15, http://dx.doi.org/10.1063/5.0046941
,2021, 'Corrigendum: Ancestral Sequence Reconstructions of MotB Are Proton-Motile and Require MotA for Motility (Front. Microbiol, (2020), 11, (625837), 10.3389/fmicb.2020.625837)', Frontiers in Microbiology, 12, http://dx.doi.org/10.3389/fmicb.2021.650373
,2021, 'Voices of biotech research', Nature biotechnology, 39, pp. 281 - 286, http://dx.doi.org/10.1038/s41587-021-00847-1
,2021, 'Pushing the super-resolution limit: Recent improvements in microscopy below the diffraction limit', Biochemical Society Transactions, 49, pp. 431 - 439, http://dx.doi.org/10.1042/BST20200746
,2021, 'Homology between the flagellar export apparatus and ATP synthetase: evidence from synteny predating the Last Universal Common Ancestor', , http://dx.doi.org/10.1101/2021.01.01.425057
,2021, 'Novel amiloride derivatives that inhibit bacterial motility across multiple strains and stator types', , http://dx.doi.org/10.1101/2021.04.13.439105
,2021, 'The rapid evolution of flagellar ion-selectivity in experimental populations ofE. coli', , http://dx.doi.org/10.1101/2021.01.26.427765
,2020, 'Ancestral Sequence Reconstructions of MotB Are Proton-Motile and Require MotA for Motility', Frontiers in Microbiology, 11, http://dx.doi.org/10.3389/fmicb.2020.625837
,2020, 'Evolution of the stator elements of rotary prokaryote motors', Journal of Bacteriology, 202, http://dx.doi.org/10.1128/JB.00557-19
,2020, 'Microfluidic techniques for separation of bacterial cells via taxis', Microbial Cell, 7, pp. 66 - 79, http://dx.doi.org/10.15698/MIC2020.03.710
,2020, 'Binding of DNA origami to lipids: maximising yield and switching via strand-displacement', , http://dx.doi.org/10.1101/2020.06.01.128686
,2020, 'Separation and enrichment of sodium-motile bacteria using cost-effective microfluidics', , http://dx.doi.org/10.1101/2020.11.24.395772
,2019, 'TagPaint: Covalent labelling of genetically encoded protein tags for DNA-PAINT imaging', Royal Society Open Science, 6, pp. 191268, http://dx.doi.org/10.1098/rsos.191268
,2019, 'The fusion of lipid and DNA nanotechnology', Genes, 10, http://dx.doi.org/10.3390/genes10121001
,2019, 'Stoichiometric quantification of spatially dense assemblies with qPAINT', Nanoscale, 11, pp. 12460 - 12464, http://dx.doi.org/10.1039/c9nr00472f
,2019, 'ABA/ASB biophysics and medicine session 2018', Biophysical Reviews, 11, pp. 273 - 274, http://dx.doi.org/10.1007/s12551-019-00529-y
,2019, 'Sodium-powered stators of the bacterial flagellar motor can generate torque in the presence of phenamil with mutations near the peptidoglycan-binding region', Molecular Microbiology, 111, pp. 1689 - 1699, http://dx.doi.org/10.1111/mmi.14246
,2019, 'A detour to sterol synthesis', Nature Microbiology, 4, pp. 214 - 215, http://dx.doi.org/10.1038/s41564-018-0347-8
,2019, 'Stoichiometric quantification of spatially dense assemblies with qPAINT', , http://dx.doi.org/10.1101/525345
,2019, 'Fluorescence microscopy of piezo1 in droplet hydrogel bilayers', Channels, 13, pp. 102 - 109, http://dx.doi.org/10.1080/19336950.2019.1586046
,2019, 'tagPAINT: covalent labelling of genetically encoded protein tags for DNA-PAINT imaging', , pp. 604462, http://dx.doi.org/10.1101/604462
,2018, 'DNA-based super-resolution microscopy: DNA-PAINT', Genes, 9, http://dx.doi.org/10.3390/genes9120621
,2018, 'Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-Time fluorescence imaging', Nature Communications, 9, http://dx.doi.org/10.1038/s41467-018-04288-4
,2018, 'Machine learning: applications of artificial intelligence to imaging and diagnosis.', Biophys Rev, 11, pp. 111 - 118, http://dx.doi.org/10.1007/s12551-018-0449-9
,2018, 'Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering', ACS Nano, 12, pp. 5791 - 5799, http://dx.doi.org/10.1021/acsnano.8b01669
,2018, 'The Quest for Optical Multiplexing in Bio-discoveries', Chem, 4, pp. 997 - 1021, http://dx.doi.org/10.1016/j.chempr.2018.01.009
,