Select Publications
Book Chapters
2022, 'Priming Leukemia with 5-Azacytidine Enhances CAR T Cell Therapy: A Recent Study', in Current Innovations in Medicine and Medical Science Vol. 3, Book Publisher International (a part of SCIENCEDOMAIN International), pp. 61 - 87, http://dx.doi.org/10.9734/bpi/cimms/v3/7736f
,2017, 'Ex vivo expansion of hematopoietic stem cells to improve engraftment in stem cell transplantation', in Methods in Molecular Biology, pp. 301 - 311, http://dx.doi.org/10.1007/978-1-4939-6603-5_19
,2015, 'Strategies to Improve Immune Reconstitution After Haematopoietic Stem Cell Transplantation', in Frontiers in Stem Cell and Regenerative Medicine Research, BENTHAM SCIENCE PUBLISHERS, pp. 30 - 64, http://dx.doi.org/10.2174/9781608059942115010004
,2014, 'Strategies to improve immune reconstitution after haematopoeitic stem cell transplantation.', in Rahman A; Anjum S (ed.), Frontiers in Stem Cell and Regenerative Medicine Research, vol. 1, Bentham Science, pp. 30 - 64, http://dx.doi.org/10.2174/97816080599421150101
,2011, 'Ex Vivo Expansion of Haematopoietic Stem Cells to Improve Engraftment in Stem Cell Transplantation', in Humana Press (ed.), Cell Cycle Synchronization, Springer, New York, pp. 249 - 260, http://dx.doi.org/10.1007/978-1-61779-182-6_17
,Journal articles
2023, 'Delivery of PEGylated liposomal doxorubicin by bispecific antibodies improves treatment in models of high-risk childhood leukemia', Science translational medicine, 15, pp. eabm1262 - eabm1262, http://dx.doi.org/10.1126/scitranslmed.abm1262
,2022, 'Donor T cells for CAR T cell therapy', Biomarker Research, 10, http://dx.doi.org/10.1186/s40364-022-00359-3
,2022, 'Characterizing piggyBat—a transposase for genetic modification of T cells', Molecular Therapy - Methods and Clinical Development, 25, pp. 250 - 263, http://dx.doi.org/10.1016/j.omtm.2022.03.012
,2021, 'Targeted therapy of TERT-rearranged neuroblastoma with BET bromodomain inhibitor and proteasome inhibitor combination therapy', Clinical Cancer Research, 27, pp. 1438 - 1451, http://dx.doi.org/10.1158/1078-0432.CCR-20-3044
,2021, 'Priming Leukemia with 5-Azacytidine Enhances CAR T Cell Therapy', IMMUNOTARGETS AND THERAPY, 10, pp. 123 - 140, http://dx.doi.org/10.2147/ITT.S296161
,2020, 'Targeting the immune-suppressive tumor microenvironment to potentiate CAR T cell therapy', Cancer Reports and Reviews, 4, http://dx.doi.org/10.15761/crr.1000203
,2018, 'PiggyBac-engineered T-cells expressing CD19-specific CARs that lack IgG1 Fc spacers have potent activity against B-ALL xenografts.', Molecular Therapy, 26, pp. 1883 - 1895, http://dx.doi.org/10.1016/j.ymthe.2018.05.007
,2018, 'Bromodomain inhibitor jq1 modulates immune suppressive pathways in neuroblastoma and enhances CARGD2T cell therapy', Cytotherapy, 20, pp. S97 - S97, http://dx.doi.org/10.1016/j.jcyt.2018.02.285
,2018, 'Epigenetic agent modulates tumour microenvironment and potentiates cart cell therapy', Cytotherapy, 20, pp. S97 - S97, http://dx.doi.org/10.1016/j.jcyt.2018.02.284
,2017, 'Increasing Stem Cell Dose Promotes Posttransplant Immune Reconstitution', Stem cells and development, 26, pp. 461 - 470, http://dx.doi.org/10.1089/scd.2016.0186
,2016, 'Haematopoietic Stem Cell Transplants Enhance CART Cell Expansion and Persistence in Xenograft Mouse Model', Cytotherapy, 18, pp. S98 - S98, http://dx.doi.org/10.1016/j.jcyt.2016.03.200
,2016, 'Prolonging CART Cell Persistence Using Conditioning with 5-Azacytidine', Cytotherapy, 18, pp. S98 - S98, http://dx.doi.org/10.1016/j.jcyt.2016.03.201
,2016, 'Stem Cell Approach to Generate Chimeric Antigen Receptor Modified Immune Effector Cells to Treat Cancer', Cytotherapy, 18, pp. S101 - S101, http://dx.doi.org/10.1016/j.jcyt.2016.03.211
,2016, 'Use of HDACi and PD-1/PD-L1 Blockade to Enhance Cytolytic Activity of Ex Vivo Expanded NK Cells Against Neuroblastoma', Cytotherapy, 18, pp. S101 - S101, http://dx.doi.org/10.1016/j.jcyt.2016.03.212
,2015, 'Small-molecule inhibitor of glycogen synthase kinase 3β 6-bromoindirubin-3-oxime inhibits hematopoietic regeneration in stem cell recipient mice', Stem Cells and Development, 24, pp. 724 - 736, http://dx.doi.org/10.1089/scd.2014.0230
,2015, 'Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia', Experimental Hematology, 43, pp. 1001 - 1014.e5, http://dx.doi.org/10.1016/j.exphem.2015.08.006
,2014, 'Identification of plasma Complement C3 as a potential biomarker for neuroblastoma using a quantitative proteomic approach', Journal of Proteomics, 96, pp. 1 - 12, http://dx.doi.org/10.1016/j.jprot.2013.10.032
,2014, 'GSK-3β inhibition promotes early engraftment of ex vivo-expanded haematopoietic stem cells', Cell Proliferation, 47, pp. 113 - 123, http://dx.doi.org/10.1111/cpr.12092
,2013, 'NOVEL APPROACH TO GENERATE CHIMERIC ANTIGEN RECEPTOR (CAR) T CELLS USING GENETICALLY MODIFIED T CELL PRECURSORS', CYTOTHERAPY, 15, pp. S54 - S54, http://dx.doi.org/10.1016/j.jcyt.2013.01.211
,2013, 'GSK3 inhibition prevents lethal GVHD in mice', Experimental Hematology, 41, http://dx.doi.org/10.1016/j.exphem.2012.09.005
,2013, 'GSK-3β inhibition preserves naive T cell phenotype in bone marrow reconstituted mice', Experimental Hematology, 41, pp. 1016 - 1027, http://dx.doi.org/10.1016/j.exphem.2013.08.006
,2012, 'Ex vivo expansion of cord blood progenitors impairs their short-term and long-term repopulating activity associated with transcriptional dysregulation of signalling networks', Cell Proliferation, 45, pp. 266 - 278, http://dx.doi.org/10.1111/j.1365-2184.2012.00813.x
,2011, 'GSK-3β Inhibition Promotes Engraftment of Ex Vivo-Expanded Hematopoietic Stem Cells and Modulates Gene Expression', Stem Cells, 29, pp. 108 - 118, http://dx.doi.org/10.1002/stem.551
,2011, 'IRF1 (interferon regulatory factor 1)', Atlas of Genetics and Cytogenetics in Oncology and Haematology, http://dx.doi.org/10.4267/2042/38570
,2010, 'Glycogen synthase kinase−3β inhibitors suppress leukemia cell growth', Experimental Hematology, 38, pp. 908 - 921, http://dx.doi.org/10.1016/j.exphem.2010.06.001
,2010, 'Using Small Molecule GSK3 beta Inhibitors to Treat Inflammation', Current Medicinal Chemistry: Cardiovascular and Hematological Agents, 17, pp. 2873 - 2881, http://dx.doi.org/10.2174/092986710792065090
,2008, 'GSK-3β Inhibition Activates WNT, Delays Division and Preserves the Function in Hematopoietic Stem Cell', Blood, 112, pp. 616 - 616, http://dx.doi.org/10.1182/blood.v112.11.616.616
,2008, 'Glycogen synthase kinase-3 beta inhibition preserves hematopoietic stem cell activity and inhibits leukemic cell growth', Stem Cells, 26, pp. 1288 - 1297, http://dx.doi.org/10.1634/stemcells.2007-0600
,2008, 'siRNA targeting the IRF2 transcription factor inhibits leukaemic cell growth.', International Journal of Oncology, 33, pp. 175 - 183
,2008, 'The role of glycogen synthase kinase-3 beta in normal haematopoiesis, angiogenesis and leukaemia', Current Medicinal Chemistry: Cardiovascular and Hematological Agents, 15, pp. 1493 - 1499, http://dx.doi.org/10.2174/092986708784638834
,2007, 'Glycogen synthase kinase-3B regulates ex-vivo expansion and engraftment of umbilical cord blood hematopoietic stem cells through activation of WNT signalling', BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 13, pp. 1395 - 1395, http://dx.doi.org/10.1016/j.bbmt.2007.08.016
,2007, 'N-ras oncogene-induced gene expression in human hematopoietic progenitor cells: Upregulation of p16INK4a and p21CIP1/WAF1 correlates with myeloid differentiation', Experimental Hematology, 35, pp. 908 - 919, http://dx.doi.org/10.1016/j.exphem.2007.02.011
,2006, 'Mutant Ras-Expressing Fibroblasts Induce Expansion of Circulating Angio- and Lymphangiogenic Precursor Cells: Potential Role in Tumour Vascularisation.', Blood, 108, pp. 1331 - 1331, http://dx.doi.org/10.1182/blood.v108.11.1331.1331
,2006, 'Novel Role of Activated Ras in Leukaemogenesis: Induction of Angiogenesis.', Blood, 108, pp. 1313 - 1313, http://dx.doi.org/10.1182/blood.v108.11.1313.1313
,2006, 'The role of IRF1 and IRF2 transcription factors in leukaemogenesis', Current Gene Therapy, 6, pp. 543 - 550, http://dx.doi.org/10.2174/156652306778520683
,2005, 'Targeting the IRF2 transcription factor to inhibit leukaemic cell growth', Journal of Gene Medicine, 7, pp. 1135 - 1135, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000231477900071&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a
,2005, 'A retroviral library genetic screen identitifies IRF-2 as an inhabitor of N-ras induced growth suppervision in leukemai cells', Oncogene, 24, pp. 7327 - 7336, http://dx.doi.org/10.1038/sj.onc.1208877
,2005, 'Mutant N-ras activation in primary human hemaopoietic progenitor cells: biologic, phenotypic and genetic sequelae', EJC Supplements, 3, pp. 285 - 285, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000247564801146&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a
,2005, 'N-ras induced growth suppression of myeloid cells is mediated by IRF-1', Cancer research, 65, pp. 797 - 804
,2004, 'Mutant N-ras preferentially drives human CD34+ hematopoietic progenitor cells into myeloid proliferation both in vitro and in the NOd/SCID mouse.', Experimental Hematology, 32, pp. 852 - 860, http://dx.doi.org/10.1016/j.exphem.2004.06.001
,2004, 'Susceptibility of cell populations to transduction by retroviral vectors', Journal of Virology, 78, pp. 5097 - 5102, http://dx.doi.org/10.1128/JVI.78.10.5097-5102.2004
,2003, 'Retrovirus vector production and transduction: Modulation by the cell cycle', Journal of General Virology, 84, pp. 3131 - 3141, http://dx.doi.org/10.1099/vir.0.19099-0
,2003, 'A sensitive dual-fluorescence reporter system enables positive selection of ras suppressors by suppression of ras-induced apoptosis', Cancer Gene Therapy, 10, pp. 745 - 754, http://dx.doi.org/10.1038/sj.cgt.7700603
,2003, 'Genetic control of hematopoietic stem cell biology and leukemogenesis', Blood, 102, pp. 332A - 332A, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000186536701194&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a
,2003, 'Bone marrow reconstituiton as a relevant model of genetically programmd leukemia', Current Medicinal Chemistry: Cardiovascular and Hematological Agents, 1, pp. 83 - 97, http://dx.doi.org/10.2174/1568016033477531
,